oru.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise
Örebro University, School of Health and Medical Sciences.
Show others and affiliations
2007 (English)In: Acta Physiologica, ISSN 1748-1708, E-ISSN 1748-1716, Vol. 191, no 1, p. 67-75Article in journal (Refereed) Published
Abstract [en]

AIM: Exercise induced alterations in the rate of muscle protein synthesis may be related to activity changes in signalling pathways involved in protein synthesis. The aim of the present study was to investigate whether such changes in enzyme phosphorylation occur after endurance exercise. METHODS: Six male subjects performed ergometer cycling exercise for 1 h at 75% of the maximal oxygen uptake. Muscle biopsy samples from the vastus lateralis were taken before, immediately after, 30 min, 1 h, 2 h and 3 h after exercise for the determination of protein kinase B (PKB/Akt), mammalian target of rapamycin (mTOR), glycogen synthase 3 kinase (GSK-3), p70S6 kinase (p70(S6k)) and eukaryotic elongation factor 2 (eEF2) phosphorylation. RESULTS: The phosphorylation of Akt was unchanged directly after exercise, but two- to fourfold increased 1 and 2 h after the exercise, whereas GSK-3alpha and beta phosphorylation were two- to fourfold elevated throughout most of the 3-h recovery period. Phosphorylation of mTOR was elevated threefold directly after, 30 min and 2 h after exercise and eEF2 phosphorylation was decreased by 35-75% from 30 min to 3 h-recovery. Exercise led to a five- to eightfold increase in Ser(424)/Thr(421) phosphorylation of p70(S6k) up to 30 min after exercise, but no change in Thr(389) phosphorylation. CONCLUSIONS: The marked decrease in eEF2 phosphorylation suggests an activation of translation elongation and possibly protein synthesis in the recovery period after sustained endurance exercise. The lack of p70(S6k) activation suggests that translation initiation is activated via alternative pathways, possibly via the activation of eukaryotic initiating factor 2B.

Place, publisher, year, edition, pages
Blackwel , 2007. Vol. 191, no 1, p. 67-75
National Category
Medical and Health Sciences Physiology Social Sciences Interdisciplinary Sport and Fitness Sciences
Research subject
Sport Science
Identifiers
URN: urn:nbn:se:oru:diva-5028DOI: 10.1111/j.1748-1716.2007.01712.xPubMedID: 17488244OAI: oai:DiVA.org:oru-5028DiVA, id: diva2:139342
Available from: 2009-01-21 Created: 2009-01-21 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Andersson, Helena M

Search in DiVA

By author/editor
Andersson, Helena M
By organisation
School of Health and Medical Sciences
In the same journal
Acta Physiologica
Medical and Health SciencesPhysiologySocial Sciences InterdisciplinarySport and Fitness Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 45 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf