To Örebro University

oru.seÖrebro University Publications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
BIG DATA VISUALISERING
Örebro University, School of Science and Technology.
2019 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
BIG DATA VISUALIZATION (English)
Abstract [en]

Presenting data in graphical forms is important in many different industries in order tounderstand information asset from data that is being collected. The amount of data is growingfast and brings new challenges for visualizing the data in graphical representations. Systemsare dependent on data visualization for detecting defects and faults of productions. Byimproved performance of time series data visualization increases the ability of detectingfaults and defects of productions.This report takes up a methods for visualizing time series data with high velocity in toaccount and discusses how big data of multivariable can be visualized with PCA.

Abstract [sv]

Visualisering av data i grafiska presentationer är viktigt inom många olika områden för attenklare förstå information och relationer av insamlad data. Mängden data växer snabbt tillstora skalor som är svåra att hantera och bidrar till nya utmaningar vid visualisering av data igrafiska presentationer. System är beroende av data visualisering för att upptäcka defekteroch fel av produktion. Genom att förbättra prestandan av tidsseriedata visualisering ökar detmöjligheten att upptäcka fel och defekter av produktion.Rapporten tar upp metoder för visualisering av tidsseriedata med snabb prestanda ochdiskuterar hur Big data av multivaribler kan visualiseras med PCA.

Place, publisher, year, edition, pages
2019. , p. 31
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:oru:diva-80008OAI: oai:DiVA.org:oru-80008DiVA, id: diva2:1393448
Subject / course
Computer Engineering
Supervisors
Examiners
Available from: 2020-02-17 Created: 2020-02-17 Last updated: 2020-02-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
School of Science and Technology
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 1161 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf