Neutrophil Extracellular Traps (NETs) in the Cerebrospinal Fluid Samples from Children and Adults with Central Nervous System InfectionsShow others and affiliations
2020 (English)In: Cells, E-ISSN 2073-4409, Vol. 9, no 1, article id 43Article in journal (Refereed) Published
Abstract [en]
Neutrophils operate as part of the innate defence in the skin and may eliminate the Borrelia spirochaete via phagocytosis, oxidative bursts, and hydrolytic enzymes. However, their importance in Lyme neuroborreliosis (LNB) is unclear. Neutrophil extracellular trap (NET) formation, which is associated with the production of reactive oxygen species, involves the extrusion of the neutrophil DNA to form traps that incapacitate bacteria and immobilise viruses. Meanwhile, NET formation has recently been studied in pneumococcal meningitis, the role of NETs in other central nervous system (CNS) infections has previously not been studied. Here, cerebrospinal fluid (CSF) samples from clinically well-characterised children (N = 111) and adults (N = 64) with LNB and other CNS infections were analysed for NETs (DNA/myeloperoxidase complexes) and elastase activity. NETs were detected more frequently in the children than the adults (p = 0.01). NET presence was associated with higher CSF levels of CXCL1 (p < 0.001), CXCL6 (p = 0.007), CXCL8 (p = 0.003), CXCL10 (p < 0.001), MMP-9 (p = 0.002), TNF (p = 0.02), IL-6 (p < 0.001), and IL-17A (p = 0.03). NETs were associated with fever (p = 0.002) and correlated with polynuclear pleocytosis (r(s) = 0.53, p < 0.0001). We show that neutrophil activation and active NET formation occur in the CSF samples of children and adults with CNS infections, mainly caused by Borrelia and neurotropic viruses. The role of NETs in the early phase of viral/bacterial CNS infections warrants further investigation.
Place, publisher, year, edition, pages
MDPI , 2020. Vol. 9, no 1, article id 43
Keywords [en]
neutrophil extracellular traps, cerebrospinal fluid, adults, children, central nervous system, infection, chemokines, cytokines, borrelia, virus
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:oru:diva-80675DOI: 10.3390/cells9010043ISI: 000515398200043PubMedID: 31877982Scopus ID: 2-s2.0-85128311502OAI: oai:DiVA.org:oru-80675DiVA, id: diva2:1414882
Funder
Swedish Rheumatism Association
Note
Funding Agencies:
Region Östergötland (ALF grants)
Ingrid Asp Foundation
Center for Clinical Research Dalarna
King Gustaf V and Queen Victoria's Freemasons Foundations
Åland Cultural Foundation
Wilhelm & Else Stockmann Foundation
German Research Foundation (DFG) GRK1660
European Commission (H2020-MSCA-RISE-2015) 690836 PANG
Volkswagen
90361
2020-03-162020-03-162023-12-08Bibliographically approved