This article explains and illustrates the use of a set of coupled dynamical equations, second order in a fictitious time, which converges to solutions of stationary Schrödinger equations with additional constraints. In fact, the method is general and can solve constrained minimization problems in many fields. We present the method for introductory applications in quantum mechanics including three qualitative different numerical examples: the radial Schrödinger equation for the hydrogen atom; the two-dimensional harmonic oscillator with degenerate excited states; and a non-linear Schrödinger equation for rotating states. The presented method is intuitive, with analogies in classical mechanics for damped oscillators, and easy to implement, either in own coding, or with software for dynamical systems. Hence, we find it suitable to introduce it in a continuation course in quantum mechanics or generally in applied mathematics courses which contain computational parts. The undergraduate student can for example use our derived results and the code (supplemental material) to study the Schrödinger equation in 1D for any potential. The graduate student and the general physicist can work from our three examples to derive their own results for other models including other global constraints.