Indoor place categorization is an important capability for service robots working and interacting in human environments. This paper presents a new place categorization method which uses information about the spatial correlation between the different image modalities provided by RGB-D sensors. Our approach applies co-occurrence histograms of local binary patterns (LBPs) from gray and depth images that correspond to the same indoor scene. The resulting histograms are used as feature vectors in a supervised classifier. Our experimental results show the effectiveness of our method to categorize indoor places using RGB-D cameras.
Best Paper in the Machine Vision Workshop
Funding Agency:
Japan Society for the Promotion of Science, Grant Number: 26249029