To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Generic symmetric matrix pencils with bounded rank
Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain.
Örebro University, School of Science and Technology.ORCID iD: 0000-0001-9110-6182
Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain.
2020 (English)In: Journal of Spectral Theory, ISSN 1664-039X, E-ISSN 1664-0403, Vol. 10, no 3, p. 905-926Article in journal (Refereed) Published
Abstract [en]

We show that the set of n x n complex symmetric matrix pencils of rank at most r is the union of the closures of left perpendicular r/2 Right perpendicular + 1 sets of matrix pencils with some, explicitly described, complete eigenstructures. As a consequence, these are the generic complete eigenstructures of n x n complex symmetric matrix pencils of rank at most r. We also show that the irreducible components of the set of n x n symmetric matrix pencils with rank at most r, when considered as an algebraic set, are among these closures.

Place, publisher, year, edition, pages
EMS Publishing House , 2020. Vol. 10, no 3, p. 905-926
Keywords [en]
Matrix pencil, symmetric pencil, strict equivalence, congruence, orbit, bundle, spectral information, complete eigenstructure
National Category
Mathematics
Identifiers
URN: urn:nbn:se:oru:diva-87325DOI: 10.4171/JST/316ISI: 000581041700006Scopus ID: 2-s2.0-85090910343OAI: oai:DiVA.org:oru-87325DiVA, id: diva2:1500164
Note

Funding Agencies:

Ministerio de Economia y Competitividad of Spain  MTM2015-65798-P

Ministerio de Ciencia, Innovacion y Universidades of Spain  MTM2017-90682-REDT

Agencia Estatal de Investigacion of Spain  PID2019-106362GB-I00 / AEI / 10.13039/501100011033

Available from: 2020-11-11 Created: 2020-11-11 Last updated: 2020-11-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Dmytryshyn, Andrii

Search in DiVA

By author/editor
Dmytryshyn, Andrii
By organisation
School of Science and Technology
In the same journal
Journal of Spectral Theory
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 66 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf