To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Combining nonlinear Fourier transform and neural network-based processing in optical communications
Aston Institute of Photonic Technologies, Aston University, Birmingham, United Kingdom. (AASS MRO Lab)ORCID iD: 0000-0002-2744-0132
Aston Institute of Photonic Technologies, Aston University, Birmingham, United Kingdom.ORCID iD: 0000-0002-5974-6160
Aston Institute of Photonic Technologies, Aston University, Birmingham, United Kingdom.ORCID iD: 0000-0002-6278-976X
Aston Institute of Photonic Technologies, Aston University, Birmingham, United Kingdom.ORCID iD: 0000-0002-6997-9427
Show others and affiliations
2020 (English)In: Optics Letters, ISSN 0146-9592, E-ISSN 1539-4794, Vol. 45, no 13, p. 3462-3465, article id OL.394115Article in journal, Letter (Refereed) Published
Abstract [en]

We propose a method to improve the performance of the nonlinear Fourier transform (NFT)-based optical transmission system by applying the neural network post-processing of the nonlinear spectrum at the receiver. We demonstrate through numerical modeling about one order of magnitude bit error rate improvement and compare this method with machine learning processing based on the classification of the received symbols. The proposed approach also offers a way to improve numerical accuracy of the inverse NFT; therefore, it can find a range of applications beyond optical communications.

Place, publisher, year, edition, pages
Optical Society of America , 2020. Vol. 45, no 13, p. 3462-3465, article id OL.394115
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:oru:diva-89134DOI: 10.1364/OL.394115ISI: 000546808900029PubMedID: 32630872Scopus ID: 2-s2.0-85087711881OAI: oai:DiVA.org:oru-89134DiVA, id: diva2:1524109
Note

Funding Agencies:

H2020 Marie Sklodowska-Curie Actions GA-2015-713694 751561

Engineering & Physical Sciences Research Council (EPSRC) TRANSNET EP/R035342/1

Leverhulme Trust RP-2018-063

Available from: 2021-01-31 Created: 2021-01-31 Last updated: 2021-02-01Bibliographically approved

Open Access in DiVA

Combining nonlinear Fourier transform and neural network-based processing in optical communications(1898 kB)274 downloads
File information
File name FULLTEXT01.pdfFile size 1898 kBChecksum SHA-512
6a1ae29c91adb7f4aec047cfc238cd9711626760906f3bd49b0a5c5e8fd23c2a4e6636e33b960ffa45de86b4a10c482e4d4e5683f971cc49ee17cd0dc6eaaa3b
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Kotlyar, Oleksandr

Search in DiVA

By author/editor
Kotlyar, OleksandrPankratova, MarynaKamalian-Kopae, MortezaVasylchenkova, AnastasiiaPrilepsky, JaroslawTuritsyn, Sergei
In the same journal
Optics Letters
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar
Total: 274 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 201 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf