To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
DURLD: Malicious URL Detection Using Deep Learning-Based Character Level Representations
Amrita Vishwa Vidyapeetham, Center for Computational Engineering and Networking, Coimbatore, India.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA.
Örebro University, School of Science and Technology. (AASS MRO LAB)ORCID iD: 0000-0003-1827-9698
Charles Darwin University, Darwin Northern Territory, Australia.
2020 (English)In: Malware Analysis Using Artificial Intelligence and Deep Learning / [ed] Mark Stamp, Mamoun Alazab, Andrii Shalaginov, Springer, 2020, p. 535-554Chapter in book (Refereed)
Place, publisher, year, edition, pages
Springer, 2020. p. 535-554
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:oru:diva-89191DOI: 10.1007/978-3-030-62582-5_21ISBN: 9783030625825 (electronic)ISBN: 9783030625818 (print)OAI: oai:DiVA.org:oru-89191DiVA, id: diva2:1524276
Available from: 2021-02-01 Created: 2021-02-01 Last updated: 2021-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Arunachalam, Ajay

Search in DiVA

By author/editor
Arunachalam, Ajay
By organisation
School of Science and Technology
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 120 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf