To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Compiling Probabilistic Logic Programs into Sentential Decision Diagrams
Department of Computer Science, KU Leuven, Leuven, Belgium.
Department of Computer Science, KU Leuven, Leuven, Belgium.
Department of Computer Science, KU Leuven, Leuven, Belgium.
Department of Computer Science, KU Leuven, Leuven, Belgium.ORCID iD: 0000-0002-6860-6303
2014 (English)In: Workshop on Probabilistic Logic Programming (PLP): Proceedings, 2014, Vol. 3, p. 1-10Conference paper, Published paper (Refereed)
Abstract [en]

Knowledge compilation algorithms transform a probabilistic logic program into a circuit representation that permits efficient probability computation. Knowledge compilation underlies algorithms for exact probabilistic inference and parameter learning in several languages, including ProbLog, PRISM, and LPADs. Developing such algorithms involves a choice, of which circuit language to target, and which compilation algorithm to use. Historically, Binary Decision Diagrams (BDDs) have been a popular target language, whereas recently, deterministic-Decomposable Negation Normal Form (d-DNNF) circuits were shown to outperform BDDs on these tasks. We investigate the use of a new language, called Sentential Decision Diagrams (SDDs), for inference in probabilistic logic programs. SDDs combine desirable properties of BDDs and d-DNNFs. Like BDDs, they support bottom-up compilation and circuit minimization, yet they are a more general and flexible representation. Our preliminary experiments show that compilation to SDD yields smaller circuits and more scalable inference, outperforming the state of the art in ProbLog inference.

Place, publisher, year, edition, pages
2014. Vol. 3, p. 1-10
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:oru:diva-92042OAI: oai:DiVA.org:oru-92042DiVA, id: diva2:1558456
Conference
1st International Workshop on Probabilistic Logic Programming (PLP 2014), Vienna, Austria, July 17, 2014
Available from: 2021-05-31 Created: 2021-05-31 Last updated: 2021-05-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

De Raedt, Luc

Search in DiVA

By author/editor
De Raedt, Luc
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf