To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting returns and dividend growth - The role of non-Gaussian innovations
Örebro University, Örebro University School of Business.ORCID iD: 0000-0001-8124-328x
Örebro University, Örebro University School of Business.ORCID iD: 0000-0002-1395-9427
Örebro University, Örebro University School of Business.ORCID iD: 0000-0002-0682-8584
2022 (English)In: Finance Research Letters, ISSN 1544-6123, E-ISSN 1544-6131, Vol. 46, no Part A, p. 14article id 102315Article in journal (Refereed) Published
Abstract [en]

In this paper we assess whether flexible modelling of innovations impact the predictive performance of the dividend price ratio for returns and dividend growth. Using Bayesian vector autoregressions we allow for stochastic volatility, heavy tails and skewness in the innovations. Our results suggest that point forecasts are barely affected by these features, suggesting that workhorse models on predictability are sufficient. For density forecasts, however, we find that stochastic volatility substantially improves the forecasting performance.

Place, publisher, year, edition, pages
Elsevier, 2022. Vol. 46, no Part A, p. 14article id 102315
Keywords [en]
Bayesian VAR, Dividend Growth Predictability, Predictive Regression, Return Predictability
National Category
Economics Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:oru:diva-92153DOI: 10.1016/j.frl.2021.102315ISI: 000821310600028Scopus ID: 2-s2.0-85111089481OAI: oai:DiVA.org:oru-92153DiVA, id: diva2:1560732
Funder
The Jan Wallander and Tom Hedelius FoundationTore Browaldhs stiftelse, Bv18-0018 P18-0201 W19-0021Swedish Research Council, 2018-05973
Note

Funding agency:

Örebro University

Available from: 2021-06-04 Created: 2021-06-04 Last updated: 2022-10-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Kiss, TamásMazur, StepanNguyen, Hoang

Search in DiVA

By author/editor
Kiss, TamásMazur, StepanNguyen, Hoang
By organisation
Örebro University School of Business
In the same journal
Finance Research Letters
EconomicsProbability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 271 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf