We introduce a probabilistic language and a fast inference algorithm for state estimation in hybrid dynamic relational domains with an unknown number of objects. More specifically, we apply Particle Filters to distributional clauses. The particles represent (partial) interpretations of possible worlds (with discrete and/or continuous variables) and the filter recursively updates its beliefs about the current state. We use backward reasoning to determine which facts should be included in the partial interpretations. Experiments show that our framework can outperform the classical particle filter and is promising for robotics applications.