This chapter uses an application to explore the utility of Bayesian quantile regression (BQR) methods in producing density nowcasts. Our quantile regression modeling strategy is designed to reflect important nowcasting features, namely the use of mixed-frequency data, the ragged-edge, and large numbers of indicators (big data). An unrestricted mixed data sampling strategy within a BQR is used to accommodate a large mixed-frequency data set when nowcasting; the authors consider various shrinkage priors to avoid parameter proliferation. In an application to euro area GDP growth, using over 100 mixed-frequency indicators, the authors find that the quantile regression approach produces accurate density nowcasts including over recessionary periods when global-local shrinkage priors are used.