To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Multi-scale Topology Optimization Approach for Optimal Macro-layout and Local Grading of TPMS-based Lattices
Örebro University, School of Science and Technology.ORCID iD: 0000-0001-6821-5727
2021 (English)In: Proceedings of ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE2021) (Volume 3): Volume 3A: 47th Design Automation Conference (DAC), American Society of Mechanical Engineers , 2021Conference paper, Published paper (Refereed)
Abstract [en]

The use of lattice structures in design for additive manufacturing has quickly emerged as a popular and efficient design alternative for creating innovative multifunctional lightweight solutions. In particular, the family of triply periodic minimal surfaces (TPMS) studied in detail by Schoen for generating frame-or shell-based lattice structures seems extra promising. In this paper a multi-scale topology optimization approach for optimal macro-layout and local grading of TPMS-based lattice structures is presented. The approach is formulated using two different density fields, one for identifying the macro-layout and another one for setting the local grading of the TPMS-based lattice. The macro density variable is governed by the standard SIMP formulation, but the local one defines the orthotropic elasticity of the element following material interpolation laws derived by numerical homogenization. Such laws are derived for frame- and shell-based Gyroid, G-prime and Schwarz-D lattices using transversely isotropic elasticity for the bulk material. A nice feature of the approach is that the lower and upper additive manufacturing limits on the local density of the TMPS-based lattices are included properly. The performance of the approach is excellent, and this is demonstrated by solving several three-dimensional benchmark problems, e.g., the optimal macro-layout and local grading of Schwarz-D lattice for the established GE-bracket is identified using the presented approach.

Place, publisher, year, edition, pages
American Society of Mechanical Engineers , 2021.
Series
International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE)
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:oru:diva-97583DOI: 10.1115/DETC2021-67163Scopus ID: 2-s2.0-85119950674ISBN: 9780791885383 (print)OAI: oai:DiVA.org:oru-97583DiVA, id: diva2:1639074
Conference
ASME 2021 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE, (Virtual Conference), August 17–20, 2021
Available from: 2022-02-18 Created: 2022-02-18 Last updated: 2022-08-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Strömberg, Niclas

Search in DiVA

By author/editor
Strömberg, Niclas
By organisation
School of Science and Technology
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 97 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf