A neuroimaging study of interpersonal distance in identical and fraternal twins Show others and affiliations
2022 (English) In: Human Brain Mapping, ISSN 1065-9471, E-ISSN 1097-0193, Vol. 43, no 11, p. 3508-3523Article in journal (Refereed) Published
Abstract [en]
Keeping appropriate interpersonal distance is an evolutionary conserved behavior that can be adapted based on learning. Detailed knowledge on how interpersonal space is represented in the brain and whether such representation is genetically influenced is lacking. We measured brain function using functional magnetic resonance imaging in 294 twins (71 monozygotic, 76 dizygotic pairs) performing a distance task where neural responses to human figures were compared to cylindrical blocks. Proximal viewing distance of human figures was compared to cylinders facilitated responses in the occipital face area (OFA) and the superficial part of the amygdala, which is consistent with these areas playing a role in monitoring interpersonal distance. Using the classic twin method, we observed a genetic influence on interpersonal distance related activation in the OFA, but not in the amygdala. Results suggest that genetic factors may influence interpersonal distance monitoring via the OFA whereas the amygdala may play a role in experience-dependent adjustments of interpersonal distance.
Place, publisher, year, edition, pages John Wiley & Sons, 2022. Vol. 43, no 11, p. 3508-3523
Keywords [en]
SCR, amygdala, emotion, fMRI, fusiform face area, heritability, occipital face area, personal space
National Category
Neurosciences
Identifiers URN: urn:nbn:se:oru:diva-98649 DOI: 10.1002/hbm.25864 ISI: 000782030600001 PubMedID: 35417056 Scopus ID: 2-s2.0-85128007368 OAI: oai:DiVA.org:oru-98649 DiVA, id: diva2:1653397
Funder Riksbankens Jubileumsfond, P20-0125 Swedish Research Council, 2014-01160 2018-01322
Note Funding agency:
Bank of Sweden Tercentenary Foundation
2022-04-212022-04-212022-08-22 Bibliographically approved