In this paper we present a multidisciplinary approach combining technical practices with sensory data to optimize cultivation practices for production of plants using sensory evaluation and further the how it affects nutritional content. We apply sensory evaluation of plants under mechanical stress, in this case robot cultivated basil. Plant stress is a research field studying plants' reactions to suboptimal conditions leading to effects on growth, crop yield, and resilience to harsh environmental conditions. Some of the effects induced by mechanical stress have been shown to be beneficial, both in futuristic commercial growing paradigms (e.g., vertical farming), as well as in altering the plant's nutritional content. This pilot study uses established sensory methods such as Liking, Just-About-Right (JAR) and Check-All-That-Apply (CATA) to study the sensory effect of mechanical stress on cropped basil induced by a specially developed robotic platform. Three different kinds of cropped basil were evaluated: (a) mechanically stressed-robot cultivated, (b) non-stressed -robot cultivated from the same cropping bed (reference); and (c) a commercially organic produced basil. We investigated liking, critical attributes, sensory profile, and the use of a semi-trained culinary panel to make any presumptions on consumer acceptance. The semi-trained panel consisted of 24 culinary students with experience of daily judging sensory aspects of specific food products and cultivated crops. The underlying goal is to assess potential market aspects related to novel mechanical cultivation systems. Results shows that basil cropped in a controlled robot cultivated platform resulted in significantly better liking compared to commercially organic produced basil. Results also showed that mechanical stress had not negatively affected the sensory aspects, suggesting that eventual health benefits eating stressed plants do not come at the expense of the sensory experience.