Gaussian process (GP) implicit surface models provide environment and object representations which elegantly address noise and uncertainty while remaining sufficiently flexible to capture complex geometry. However, GP models quickly become intractable as the size of the observation set grows-a trait which is difficult to reconcile with the rate at which modern range sensors produce data. Furthermore, naive applications of GPs to implicit surface models allocate model resources uniformly, thus using precious resources to capture simple geometry. In contrast to prior work addressing these challenges though model sparsification, spatial partitioning, or ad-hoc filtering, we propose introducing model bias online through the GP's mean function. We achieve more accurate distance fields using smaller models by creating a distance field prior from features which are easy to extract and have analytic distance fields. In particular, we demonstrate this approach using linear features. We show the proposed distance field halves model size in a 2D mapping task using data from a SICK S300 sensor. When applied to a single 3D scene from the TUM RGB-D SLAM dataset, we achieve a fivefold reduction in model size. Our proposed prior results in more accurate GP implicit surfaces, while allowing existing models to function in larger environments or with larger spatial partitions due to reduced model size.