Robot-aided Gas Sensing for Emergency Responses
2022 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]
Emergency response personnel can be exposed to various extreme hazards during the response to natural and human-made disasters. In many of the scenarios, one of the risk factors is the presence of hazardous airborne chemicals. Addressing this risk factor requires typical tiring, taxing and toxic operations that are suitable to be aided by Mobile Robot Olfaction (MRO) techniques. MRO is the research domain combining intelligent mobile robots with an artificial sense of smell. It presents the prospect of practical applications for emergency response as it allows to convey useful information on-site and online without risking the safety of human responders. However, standard gas sampling procedures for laboratory use are not directly applicable to MRO due to the complexity of uncontrolled environments and the need for fast deployment and analysis. Besides, state-of-the-art gas sensing approaches have difficulties handling A Priori Unknown Gases (APUG). In APUG situations, the number or/and identities of the present chemicals are unknown, posing challenges in recognizing the underlying risks with conventional solutions such as supervised learning-based electronic noses or dedicated gas sensors targeting known analytes.
This dissertation focuses on contributions toward real-world applications of robot-aided gas sensing with an APUG problem setup. The dissertation starts with a requirement analysis of Gas Sensing for Emergency Response (GSER) to identify the key tasks in ad hoc applications. Considering that not all analytes of interest in a field application may be known in advance, a pipeline incorporating non-supervised detection and discrimination of multiple chemicals and consequent distribution modelling is found to be important for GSER. The remainder of the thesis fills this pipeline with three steps: 1) An ensemble learning-based gas detection approach is proposed to recognize significant changes from sensor signals as well as model the baseline response pattern. 2) A clustering analysis-based gas discrimination approach is developed to perform online analysis that automatically learns the number of different chemical compounds from the acquired measurements and provides a probabilistic representation of their class labels. 3) The integration of the proposed non-supervised gas detection and gas discrimination approaches with gas distribution modelling allows prototyping of a GSER system, which can enhance emergency responders’ situational awareness in the target environment. This GSER system demonstrates the concept of discriminating and mapping multiple unknown chemical compounds in uncontrolled environments with validation and evaluation using real-world data sets.
During the research on the GSER system, gas dispersal simulation is also investigated to facilitate MRO algorithm development and validation in general. In-field experiments of MRO algorithms are often time-consuming, expensive, cumber some, and lack repeatability, while most of the available simulation tools are limited to insitu gas sensors and simple environments. These issues were addressed by improving a simulation framework to replicate geometrical representations of actual real-world environments and support a variety of gas sensor models. The potential applicability of the resulting work is demonstrated by simulating a gas emission monitoring task and facilitating the development process of a state-of-the-art time-dependent gas distribution modelling algorithm.
Place, publisher, year, edition, pages
Örebro: Örebro University , 2022. , p. 176
Series
Örebro Studies in Technology, ISSN 1650-8580 ; 95
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:oru:diva-101509ISBN: 9789175294643 (print)OAI: oai:DiVA.org:oru-101509DiVA, id: diva2:1699641
Public defence
2022-11-18, Örebro universitet, Långhuset, Hörsal L2, Fakultetsgatan 1, Örebro, 13:00 (English)
Opponent
Supervisors
2022-09-282022-09-282024-01-03Bibliographically approved