To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Novel macromolecular synthetic phenolic antioxidants in sludge on a national scale in China: Their distribution, potential transformation products, and ecological risk
School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Show others and affiliations
2023 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 894, article id 164928Article in journal (Refereed) Published
Abstract [en]

To fulfill the growing demand for retarding the oxidation of polymers and minimizing their migration from various products, new macromolecular synthetic phenolic antioxidants (SPAs) have emerged in the market. There is a concern that these SPAs may be released into wastewater streams during their manufacturing and use, eventually ending up in wastewater treatment plants (WWTPs). Nevertheless, information regarding the occurrence of these SPAs in sludge, particularly on a national scale, is scarce. In this study, several macromolecular SPAs and their transformation products (TPs) were investigated in sludge samples from 45 Chinese municipal WWTPs. All 14 analytes were detected in the sludge samples, among which, 12 analytes were first reported in sludge. 2,4,6-tri-tert-butylphenol (AO246) and 2 macromolecular SPAs, pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate] (AO1010) and octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate (AO1076), were the most dominant SPAs, with geometric mean (GM) concentrations of 547, 212, and 35.2 ng/g dw, respectively. Two TPs, 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoic acid (fenozan) and 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHT-COOH), were found in some sludge samples (48.9-71.1 %) with GM of 45.5 and 12.8 ng/g dw, respectively. By using LC-Q-TOF-MS/MS analysis, we tentatively identified previously unknown TPs of 10 macromolecular SPAs in sludge. This suggests that there are still unclear mechanisms modulating the transformation of these SPAs, which underscores the complexity of their fate. Additionally, using the freshwater photobacteria Vibrio qinghaiensis sp.-Q67 (Q67) as model organism, the acute and chronic EC50 of the 14 analytes were assessed for ecological risk assessment. By considering toxicity data obtained from algae, daphnia, and fish collected or predicted from various databases, we found that these analytes, including their mixture at low detected concentrations, pose risks to aquatic systems that should not be disregarded. Overall, the current study provides a comprehensive overview of novel SPAs and their TPs in sludge, offering valuable insights for investigating their environmental behavior, fate, and risks.

Place, publisher, year, edition, pages
Elsevier, 2023. Vol. 894, article id 164928
Keywords [en]
Ecological risk, Sludge, Synthetic phenolic antioxidants, Transformation products
National Category
Environmental Sciences
Identifiers
URN: urn:nbn:se:oru:diva-106590DOI: 10.1016/j.scitotenv.2023.164928ISI: 001027783500001PubMedID: 37348711Scopus ID: 2-s2.0-85162744594OAI: oai:DiVA.org:oru-106590DiVA, id: diva2:1775750
Note

Funding agencies:

National Key Research and Development Program of China 2020YFA0907500

National Natural Science Foundation of China (NSFC) 22225605 21906179 22193051

K.C. Wong Education Foundation of China GJTD-2020-03

Foundation of Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), China YRWEF202201

Research Funds of Hangzhou Institute for Advanced Study, UCAS 2022ZZ01017

Available from: 2023-06-27 Created: 2023-06-27 Last updated: 2023-08-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Wang, Thanh

Search in DiVA

By author/editor
Wang, Thanh
By organisation
School of Science and Technology
In the same journal
Science of the Total Environment
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf