In Kac's classification of finite-dimensional Lie superalgebras, the contragredient ones can be constructed from Dynkin diagrams similar to those of the simple finite-dimensional Lie algebras, but with additional types of nodes. For example, A(n - 1,0) = sl(1 vertical bar n) can be constructed by adding a "gray" node to the Dynkin diagram of A(n-1) = sl(n), corresponding to an odd null root. The Cartan superalgebras constitute a different class, where the simplest example is W(n), the derivation algebra of the Grassmann algebra on n generators. Here we present a novel construction of W(n), from the same Dynkin diagram as A(n - 1,0), but with additional generators and relations.