We address the challenge of constructing tangency portfolios in the context of short-selling restrictions. Utilizing Bayesian techniques, we reparameterize the asset return model, enabling direct determination of priors for the tangency portfolio weights. This facilitates the integration of non-negative weight constraints into an investor's prior beliefs, resulting in a posterior distribution focused exclusively on non-negative values. Portfolio weight estimators are subsequently derived via the Markov Chain Monte Carlo (MCMC) methodology. Our novel Bayesian approach is empirically illustrated using the most significant stocks in the S&P 500 index. The method showcases promising results in terms of risk-adjusted returns and interpretability.