oru.sePublikationer
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Grounding commonsense knowledge in intelligent systems
Örebro University, School of Science and Technology. (AASS)
Örebro University, School of Science and Technology. (AASS)
Örebro University, School of Science and Technology. (AASS)ORCID iD: 0000-0002-3122-693X
2009 (English)In: Journal of Ambient Intelligence and Smart Environments, ISSN 1876-1364, E-ISSN 1876-1372, Vol. 1, no 4, 311-321 p.Article in journal (Refereed) Published
Abstract [en]

Ambient environments which integrate a number of sensing devices and actuators intended for use by human users need to be able to express knowledge about objects, their functions and their properties to assist in the performance of everyday tasks. For this to occur perceptual data must be grounded to symbolic information that in its turn can be used in the communication with the human. For symbolic information to be meaningful it should be part of a rich knowledge base that includes an ontology of concepts and common sense. In this work we present an integration between ResearchCyc and an anchoring framework that mediates the connection between the perceptual information in an intelligent home environment and the reasoning system. Through simple dialogues we validate how objects placed in the home environment are grounded by a network of sensors and made available to a larger KB where reasoning is exploited. This first integration work is a step towards integrating the richness of a KRR system developed over many years in isolation, with a physically embedded intelligent system.

Place, publisher, year, edition, pages
Amsterdam: IOS Press, 2009. Vol. 1, no 4, 311-321 p.
Keyword [en]
Physical Symbol Grounding, Commonsense Knowledge Representation, Human Robot Interaction, Intelligent Home
National Category
Computer Science
Research subject
Computer Science; Information technology
Identifiers
URN: urn:nbn:se:oru:diva-8485DOI: 10.3233/AIS-2009-0040ISI: 000207842000002Scopus ID: 2-s2.0-78651496919OAI: oai:DiVA.org:oru-8485DiVA: diva2:275938
Available from: 2009-11-09 Created: 2009-11-09 Last updated: 2017-03-15Bibliographically approved
In thesis
1. Knowledge based perceptual anchoring: grounding percepts to concepts in cognitive robots
Open this publication in new window or tab >>Knowledge based perceptual anchoring: grounding percepts to concepts in cognitive robots
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A successful articial cognitive agent needs to integrate its perception of the environment with reasoning and actuation. A key aspect of this integration is the perceptual-symbolic correspondence, which intends to give meaning to the concepts the agent refers to { known as Anchoring. However, perceptual representations alone (e.g., feature lists) cannot entirely provide sucient abstraction and enough richness to deal with the complex nature of the concepts' meanings. On the other hand, neither plain symbol manipulation appears capable of attributing the desired intrinsic meaning.

We approach this integration in the context of cognitive robots which operate in the physical world. Specically we investigate the challenge of establishing the connection between percepts and concepts referring to objects, their relations and properties.We examine how knowledge representation can be used together with an anchoring framework, so as to complement the meaning of percepts while supporting linguistic interaction. This implies that robots need to represent both their perceptual and semantic knowledge, which is often expressed in dierent abstraction levels and may originate from dierent modalities.

The solution proposed in this thesis concerns the specication, design and implementation ofa hybrid cognitive computational model, which extends a classical anchoring framework, in order to address the creation and maintenance of the perceptual-symbolic correspondences. The model is based on four main aspects: (a) robust perception, by relying on state-of-the art techniques from computer vision and mobile robot localisation; (b) symbol grounding, using topdown and bottom-up information acquisition processes as well as multi-modal representations; (c) knowledge representation and reasoning techniques in order to establish a common language and semantics regarding physical objects, their properties and relations, that are to be used between heterogeneous robotic agents and humans; and (d) commonsense information in order to enable high-level reasoning as well as to enhance the semantic

descriptions of objects.

The resulting system and the proposed integration has the potential to strengthen and expand the knowledge of a cognitive robot. Specically, by providing more robust percepts it is possible to cope better with the ambiguity and uncertainty of the perceptual data. In addition, the framework is able to exploit mutual interaction between dierent levels of representation while integrating dierent sources of information. By modelling and using semantic & perceptual knowledge, the robot can: acquire, exchange and reason formally about concepts, while prior knowledge can become a cognitive bias in the acquisition of novel concepts.

Place, publisher, year, edition, pages
Örebro: Örebro universitet, 2013. 99 p.
Series
Örebro Studies in Technology, ISSN 1650-8580 ; 55
Keyword
anchoring, knowledge representation, cognitive perception, symbol grounding, common-sense information
National Category
Computer Science
Research subject
Computer and Systems Science
Identifiers
urn:nbn:se:oru:diva-26510 (URN)978-91-7668-912-7 (ISBN)
Public defence
2013-01-17, 10:36 (English)
Opponent
Supervisors
Available from: 2012-11-26 Created: 2012-11-26 Last updated: 2013-01-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Daoutis, MariosCoradeschi, SilviaLoutfi, Amy
By organisation
School of Science and Technology
In the same journal
Journal of Ambient Intelligence and Smart Environments
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 369 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf