oru.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hydrolytic Deamination of 5-Methylcytosine in Protic Medium: A Theoretical Study
Örebro University, School of Science and Technology.
Show others and affiliations
2009 (English)In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 113, no 11, p. 2524-2533Article in journal (Refereed) Published
Abstract [en]

The mechanism for the deamination reaction of 5-methylcytosine with H2O in protic medium was investigated using DFT calculations at the B3LYP/6-311G(d,p) level of theory. Two pathways were found. Pathway 5mA is a two-step mechanism where the N3-protonated 5-MeCyt undergoes a nucleophilic attack to carbon C4 by a water dimer before the elimination of an ammonium cation. Pathway 5mB is a three-step mechanism where neutral 5-MeCyt is directly attacked by a water dimer. The resulting intermediate is then protonated to allow the elimination of an ammonium cation. Both pathways lead to the formation of thymine in interaction with an ammonium cation and a water molecule. Pathway 5mA can explain the spontaneous deamination of 5-MeCyt in protic medium at acidic pH, whereas pathway 5mB is more representative of the deamination in protic medium at neutral pH. The nucleophilic addition of the water dimer is rate-determining in both pathways and is associated with an activation free energy in aqueous solution of 137.4 kJ/mol for pathway 5mA and 134.1 kJ/mol for pathway 5mB. This latter value is in agreement with the experimental observation that 5-MeCyt deaminates four- to fivefold faster than Cyt at neutral pH. Both electrostatic and electron-transfer contributions appear to have significant importance. In vacuum, the former one dominates when the substrate is positively charged and the latter one when it is neutral.

Place, publisher, year, edition, pages
2009. Vol. 113, no 11, p. 2524-2533
National Category
Chemical Sciences
Research subject
Chemistry
Identifiers
URN: urn:nbn:se:oru:diva-13360DOI: 10.1021/jp808902jISI: 000264111000034OAI: oai:DiVA.org:oru-13360DiVA, id: diva2:387530
Available from: 2011-01-14 Created: 2011-01-11 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Eriksson, Leif A.

Search in DiVA

By author/editor
Eriksson, Leif A.
By organisation
School of Science and Technology
In the same journal
Journal of Physical Chemistry A
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 37 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf