The goal of this paper is to demonstrate the capacity of model predictive control (MPC) to generate stable walking motions without the use of predefined footsteps. Building up on well-known MPC schemes for walking motion generation, we show that a minimal modification of these schemes allows designing an online walking motion generator that can track a given reference speed of the robot and decide automatically the footstep placement. Simulation results are proposed on the HRP-2 humanoid robot, showing a significant improvement over previous approaches.