oru.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tissue engineering and the use of stem/progenitor cells for airway epithelium repair
Örebro University, School of Health and Medical Sciences.
2010 (English)In: European cells & materials, ISSN 1473-2262, Vol. 19, p. 284-299Article in journal (Refereed) Published
Abstract [en]

Stem/progenitor cells can be used to repair defects in the airway wall, resulting from e.g., tumors, trauma, tissue reactions following long-time intubations, or diseases that are associated with epithelial damage. Several potential sources of cells for airway epithelium have been identified. These can be divided into two groups. The first group consists of endogenous progenitor cells present in the respiratory tract. This group can be subdivided according to location into (a) a ductal cell type in the submucosal glands of the proximal trachea, (b) basal cells in the intercartilaginous zones of the lower trachea and bronchi, (c) variant Clara cells (Clara v-cells) in the bronchioles and (d) at the junctions between the bronchioles and the alveolar ducts, and (e) alveolar type II cells. This classification of progenitor cell niches is, however, controversial. The second group consists of exogenous stem cells derived from other tissues in the body. This second group can be subdivided into: (a) embryonic stem (ES) cells, induced pluripotent stem (iPS) cells, or amniotic fluid stem cells, (b) side-population cells from bone marrow or epithelial stem cells present in bone marrow or circulation and (c) fat-derived mesenchymal cells. Airway epithelial cells can be co-cultured in a system that includes a basal lamina equivalent, extracellular factors from mesenchymal fibroblasts, and in an air-liquid interface system. Recently, spheroid-based culture systems have been developed. Several clinical applications have been suggested: cystic fibrosis, acute respiratory distress syndrome, chronic obstructive lung disease, pulmonary fibrosis, pulmonary edema, and pulmonary hypertension. Clinical applications so far are few, but include subglottic stenosis, tracheomalacia, bronchiomalacia, and emphysema.

Place, publisher, year, edition, pages
2010. Vol. 19, p. 284-299
National Category
Medical and Health Sciences
Research subject
Medicine
Identifiers
URN: urn:nbn:se:oru:diva-25204PubMedID: 20571996OAI: oai:DiVA.org:oru-25204DiVA, id: diva2:546707
Available from: 2012-08-24 Created: 2012-08-24 Last updated: 2017-10-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

PubMed

Authority records BETA

Roomans, Godfried M.

Search in DiVA

By author/editor
Roomans, Godfried M.
By organisation
School of Health and Medical Sciences
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf