In this work we propose a method to effectively remove noise from depth images obtained with a commodity structured light sensor. The proposed approach fuses data into a consistent frame of reference over time, thus utilizing prior depth measurements and viewpoint information in the noise removal process. The effectiveness of the approach is compared to two state of the art, single-frame denoising methods in the context of feature descriptor matching and keypoint detection stability. To make more general statements about the effect of noise removal in these applications, we extend a method for evaluating local image gradient feature descriptors to the domain of 3D shape descriptors. We perform a comparative study of three classes of such descriptors: Normal Aligned Radial Features, Fast Point Feature Histograms and Depth Kernel Descriptors; and evaluate their performance on a real-world industrial application data set. We demonstrate that noise removal enabled by the dense map representation results in major improvements in matching across all classes of descriptors as well as having a substantial positive impact on keypoint detection reliability