oru.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multi-human Tracking using High-visibility Clothing for Industrial Safety
Örebro University, School of Science and Technology. (AASS)
Örebro University, School of Science and Technology. (AASS)ORCID iD: 0000-0002-2953-1564
Örebro University, School of Science and Technology. (AASS)ORCID iD: 0000-0003-0217-9326
2013 (English)In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013, p. 638-644Conference paper, Published paper (Refereed)
Abstract [en]

We propose and evaluate a system for detecting and tracking multiple humans wearing high-visibility clothing from vehicles operating in industrial work environments. We use a customized stereo camera setup equipped with IR flash and IR filter to detect the reflective material on the worker's garments and estimate their trajectories in 3D space. An evaluation in two distinct industrial environments with different degrees of complexity demonstrates the approach to be robust and accurate for tracking workers in arbitrary body poses, under occlusion, and under a wide range of different illumination settings.

Place, publisher, year, edition, pages
2013. p. 638-644
Series
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, ISSN 2153-0858
Keywords [en]
Human Detection, Robot Vision, Industrial Safety
National Category
Computer and Information Sciences
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:oru:diva-32962DOI: 10.1109/IROS.2013.6696418ISI: 000331367400094Scopus ID: 2-s2.0-84893714622OAI: oai:DiVA.org:oru-32962DiVA, id: diva2:684470
Conference
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November 3-7, 2013. Tokyo, Japan
Available from: 2014-01-08 Created: 2014-01-08 Last updated: 2018-01-11Bibliographically approved
In thesis
1. Vision-based Human Detection from Mobile Machinery in Industrial Environments
Open this publication in new window or tab >>Vision-based Human Detection from Mobile Machinery in Industrial Environments
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The problem addressed in this thesis is the detection, localisation and tracking of human workers from mobile industrial machinery using a customised vision system developed at Örebro University. Coined the RefleX Vision System, its hardware configuration and computer vision algorithms were specifically designed for real-world industrial scenarios where workers are required to wear protective high-visibility garments with retro-reflective markers. The demand for robust industry-purpose human sensing methods originates from the fact that many industrial environments represent work spaces that are shared between humans and mobile machinery. Typical examples of such environments include construction sites, surface and underground mines, storage yards and warehouses. Here, accidents involving mobile equipment and human workers frequently result in serious injuries and fatalities. Robust sensor-based detection of humans in the surrounding of mobile equipment is therefore an active research topic and represents a crucial requirement for safe vehicle operation and accident prevention in increasingly automated production sites. Addressing the described safety issue, this thesis presents a collection of papers which introduce, analyse and evaluate a novel vision-based method for detecting humans equipped with protective high-visibility garments in the neighbourhood of manned or unmanned industrial vehicles. The thesis provides a comprehensive discussion of the numerous aspects regarding the design of the hardware and the computer vision algorithms that constitute the vision system. An active nearinfrared camera setup that is customised for the robust perception of retroreflective markers builds the basis for the sensing method. Using its specific input, a set of computer vision and machine learning algorithms then perform extraction, analysis, classification and localisation of the observed reflective patterns, and eventually detection and tracking of workers with protective garments. Multiple real-world challenges, which existing methods frequently struggle to cope with, are discussed throughout the thesis, including varying ambient lighting conditions and human body pose variation. The presented work has been carried out with a strong focus on industrial applicability, and therefore includes an extensive experimental evaluation in a number of different real-world indoor and outdoor work environments.

Place, publisher, year, edition, pages
Örebro: Örebro university, 2016. p. 68
Series
Örebro Studies in Technology, ISSN 1650-8580 ; 68
Keywords
Industrial Safety, Mobile Machinery, Human Detection, Computer Vision, Machine Learning, Infrared Vision, High-visibility Clothing, Reflective Markers
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:oru:diva-48324 (URN)978-91-7529-126-0 (ISBN)
Public defence
2016-04-14, Långhuset, Hörsal 1, Örebro universitet, Fakultetsgatan 1, Örebro, 10:15 (English)
Opponent
Supervisors
Available from: 2016-02-16 Created: 2016-02-16 Last updated: 2018-01-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Mosberger, RafaelAndreasson, HenrikLilienthal, Achim J.

Search in DiVA

By author/editor
Mosberger, RafaelAndreasson, HenrikLilienthal, Achim J.
By organisation
School of Science and Technology
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 407 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf