oru.sePublikationer
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
C-13-discrimination during microbial respiration of added C-3-, C-4- and C-13-labelled sugars to a C-3-forest soil
Swedish University of Agricultural Sciences, Umeå, Sweden.ORCID iD: 0000-0003-4384-5014
Swedish University of Agricultural Sciences, Umeå, Sweden.
Swedish University of Agricultural Sciences, Umeå, Sweden.
2002 (English)In: Oecologia, ISSN 0029-8549, E-ISSN 1432-1939, Vol. 131, no 2, 245-249 p.Article in journal (Refereed) Published
Abstract [en]

We tested whether 13C-discrimination during microbial respiration, or during CO2 sampling in the field, can explain changes observed in the δ13C of emitted CO2 that follow the addition of C4-sucrose, as a microbial substrate, to the soil of a C3-ecosystem. We approached this problem by adding C3-glucose (δ13C=–23.4‰), C4-sucrose (–10.8‰) or 13C-labelled glucose (103.7‰) to the intact mor layer, the upper organic soil (–26.5‰, bulk soil organic matter), of a boreal Pinus sylvestris L. forest. If 13C-discrimination is significant, it should generate illusory differences in the calculated contributions from the added C and endogenous C3-C to total soil respiration, when C4-sucrose or 13C-labelled glucose is added. Further, if discrimination occurs, we should also be able to detect a shift in the δ13C of respired CO2 after the addition of C3-glucose. The addition of the three sugar solutions gave similar increases in soil respiration (up to a doubling 1 h after the additions), while the addition of water gave no increase in respiration. There was no change in δ13C of the emitted CO2 after additions of H2O or C3-glucose. In contrast, the addition of C4-sucrose and 13C-labelled glucose gave δ13C values of evolved CO2 that were 4.5‰ and 30.3‰ higher than the pre-sugar values, respectively. The calculated respiration rates of the added carbon sources, C4-C or 13C-labelled C, were very similar. Also, we found very similar sugar-induced increases in respiration of endogenous C3-C in the plots supplied with C4-sucrose and 13C-labelled glucose, accounting for about 50% of the total increase in respiration 1 h after addition. Our results confirm that any microbial 13C-discrimination during respiration is minor.

Place, publisher, year, edition, pages
2002. Vol. 131, no 2, 245-249 p.
Keyword [en]
Carbon isotopes, 13C-discrimination, Microbial respiration, Soil respiration, Root respiration
National Category
Ecology
Identifiers
URN: urn:nbn:se:oru:diva-37400DOI: 10.1007/s00442-002-0869-9ISI: 000175509700010OAI: oai:DiVA.org:oru-37400DiVA: diva2:751960
Available from: 2014-10-02 Created: 2014-10-02 Last updated: 2017-10-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ekblad, Alf
In the same journal
Oecologia
Ecology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 264 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf