oru.sePublikationer
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pine forest floor carbon accumulation in response to N and PK additions: Bomb C-14 modelling and respiration studies
Swedish University of Agricultural Sciences, Uppsala, Sweden .
Swedish University of Agricultural Sciences, Umeå, Sweden .
Örebro University, School of Science and Technology.ORCID iD: 0000-0003-4384-5014
Swedish University of Agricultural Sciences, Uppsala, Sweden .
2003 (English)In: Ecosystems (New York. Print), ISSN 1432-9840, E-ISSN 1435-0629, Vol. 6, no 7, 644-658 p.Article in journal (Refereed) Published
Abstract [en]

The addition of nitrogen via deposition alters the carbon balance of temperate forest ecosystems by affecting both production and decomposition rates. The effects of 20 years of nitrogen (N) and phosphorus and potassium (PK) additions were studied in a 40-year-old pine stand in northern Sweden. Carbon fluxes of the forest floor were reconstructed using a combination of data on soil 14C, tree growth, and litter decomposition. N-only additions caused an increase in needle litterfall, whereas both N and PK additions reduced long-term decomposition rates. Soil respiration measurements showed a 40% reduction in soil respiration for treated compared to control plots. The average age of forest floor carbon was 17 years. Predictions of future soil carbon storage indicate an increase of around 100% in the next 100 years for the N plots and 200% for the NPK plots. As much as 70% of the increase in soil carbon was attributed to the decreased decomposition rate, whereas only 20% was attributable to increased litter production. A reduction in decomposition was observed at a rate of N addition of 30 kg C ha−1 y−1, which is not an uncommon rate of N deposition in central Europe. A model based on the continuous-quality decomposition theory was applied to interpret decomposer and substrate parameters. The most likely explanations for the decreased decomposition rate were a fertilizer-induced increase in decomposer efficiency (production-to-assimilation ratio), a more rapid rate of decrease in litter quality, and a decrease in decomposer basic growth rate.

Place, publisher, year, edition, pages
2003. Vol. 6, no 7, 644-658 p.
Keyword [en]
carbon accumulation, decomposition rate, decomposition theory, forest fertilization, forest floor model, nitrogen deposition, soil respiration
National Category
Ecology
Identifiers
URN: urn:nbn:se:oru:diva-37396DOI: 10.1007/s10021-002-0149-xISI: 000186779400003OAI: oai:DiVA.org:oru-37396DiVA: diva2:751963
Available from: 2014-10-02 Created: 2014-10-02 Last updated: 2017-10-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ekblad, Alf
By organisation
School of Science and Technology
In the same journal
Ecosystems (New York. Print)
Ecology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 279 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf