oru.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Genome rearrangements, deletions, and amplifications in the natural population of Bartonella henselae
Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Uppsala .
Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Uppsala.
Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Uppsala.
Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Uppsala.ORCID iD: 0000-0002-7173-5579
Show others and affiliations
2006 (English)In: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 188, no 21, p. 7426-39Article in journal (Refereed) Published
Abstract [en]

Cats are the natural host for Bartonella henselae, an opportunistic human pathogen and the agent of cat scratch disease. Here, we have analyzed the natural variation in gene content and genome structure of 38 Bartonella henselae strains isolated from cats and humans by comparative genome hybridizations to microarrays and probe hybridizations to pulsed-field gel electrophoresis (PFGE) blots. The variation in gene content was modest and confined to the prophage and the genomic islands, whereas the PFGE analyses indicated extensive rearrangements across the terminus of replication with breakpoints in areas of the genomic islands. We observed no difference in gene content or structure between feline and human strains. Rather, the results suggest multiple sources of human infection from feline B. henselae strains of diverse genotypes. Additionally, the microarray hybridizations revealed DNA amplification in some strains in the so-called chromosome II-like region. The amplified segments were centered at a position corresponding to a putative phage replication initiation site and increased in size with the duration of cultivation. We hypothesize that the variable gene pool in the B. henselae population plays an important role in the establishment of long-term persistent infection in the natural host by promoting antigenic variation and escape from the host immune response.

Place, publisher, year, edition, pages
Washington DC, USA: American Society for Microbiology , 2006. Vol. 188, no 21, p. 7426-39
National Category
Bioinformatics and Systems Biology
Identifiers
URN: urn:nbn:se:oru:diva-40643DOI: 10.1128/JB.00472-06ISI: 000241471600013PubMedID: 16936024Scopus ID: 2-s2.0-33750437432OAI: oai:DiVA.org:oru-40643DiVA, id: diva2:778043
Available from: 2015-01-09 Created: 2015-01-09 Last updated: 2018-01-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Repsilber, Dirk

Search in DiVA

By author/editor
Repsilber, Dirk
In the same journal
Journal of Bacteriology
Bioinformatics and Systems Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 92 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf