oru.sePublikationer
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigations on sediment toxicity of German rivers applying a standardized bioassay battery
Hydrotox GmbH, Freiburg, Germany.
Hydrotox GmbH, Freiburg, Germany.
Hydrotox GmbH, Freiburg, Germany; Department of Ecosystem Analysis, Institute for Environmental Research, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.
Department of Ecosystem Analysis, Institute for Environmental Research, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.
Show others and affiliations
2015 (English)In: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 22, no 21, 16358-16370 p.Article in journal (Refereed) Published
Abstract [en]

River sediments may contain a huge variety of environmental contaminants and play a key role in the ecological status of aquatic ecosystems. Contaminants adsorbed to sediments and suspended solids may contribute directly or after remobilization to an adverse ecological and chemical status of surface water. In this subproject of the joint research project DanTox, acetonic Soxhlet extracts from three German river sediments from the River Rhine (Altrip and Ehrenbreitstein with moderate contamination) and River Elbe (Veringkanal Hamburg heavily contaminated) were prepared and redissolved in dimethyl sulfoxide (DMSO). These extracts were analyzed with a standard bioassay battery with organisms from different trophic levels (bacteria, algae, Daphnia, fish) as well as in the Ames test and the umuC test for bacterial mutagenicity and genotoxicity according to the respective OECD and ISO guidelines. In total, 0.01 % (standard) up to 0.25 % (only fish embryo test) of the DMSO sediment extract was dosed to the test systems resulting in maximum sediment equivalent concentrations (SEQ) of 2 up to 50 g l(-1). The sediment of Veringkanal near Hamburg harbor was significantly more toxic in most tests compared to the sediment extracts from Altrip and Ehrenbreitstein from the River Rhine. The most toxic effect found for Veringkanal was in the algae test with an ErC50 (72 h) of 0.00226 g l(-1) SEQ. Ehrenbreitstein and Altrip samples were about factor 1,000 less toxic. In the Daphnia, Lemna, and acute fish toxicity tests, no toxicity at all was found at 2 g l(-1) SEQ. corresponding to 0.01 % DMSO. Only when increasing the DMSO concentration the fish embryo test showed a 22-fold higher toxicity for Veringkanal than for Ehrenbreitstein and Altrip samples, while the toxicity difference was less evident for the Daphnia test due to the overlaying solvent toxicity above 0.05 % dimethyl sulfoxide (DMSO). The higher toxicities observed with the Veringkanal sample are supported by the PAH and PCB concentrations analyzed in the sediments. The sediment extracts of Altrip andVeringkanal were mutagenic in the Ames tester strain TA98 with metabolic activation (S9mix). The findings allow a better ecotoxicological characterization of the sediments extensively analyzed in all subprojects of the DanTox project (e. g., Garcia-Kaeufer et al. Environ Sci Pollut Res. doi: 10.1007/s11356-014-3894-4, 2014; Schiwy et al. Environ Sci Pollut Res. doi: 10.1007/s11356-014-31850, 2014; Hollert and Keiter 2015). In the absence of agreed limit values for sediment extracts in standard tests, further data with unpolluted reference sediments are required for a quantitative risk assessment of the investigated polluted sediments.

Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2015. Vol. 22, no 21, 16358-16370 p.
Keyword [en]
Sediment, Soxhlet extract, Ecotoxicology, Mutagenicity, Algae growth inhibition test, Lemna growth inhibition test, Daphnia acute toxicity test, Fish acute toxicity test, Luminescent bacteria test, Ames test, umuC test
National Category
Environmental Sciences
Research subject
Enviromental Science
Identifiers
URN: urn:nbn:se:oru:diva-46836DOI: 10.1007/s11356-015-4482-yISI: 000363964700011PubMedID: 25948379Scopus ID: 2-s2.0-84945487015OAI: oai:DiVA.org:oru-46836DiVA: diva2:874500
Note

Funding Agency:

German Federal Ministry of Education and Research 02WU1053

Available from: 2015-11-27 Created: 2015-11-27 Last updated: 2015-11-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Larsson, MariaEngwall, MagnusKeiter, Steffen
By organisation
School of Science and Technology, Örebro University, Sweden
In the same journal
Environmental science and pollution research international
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 281 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf