oru.sePublikationer
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Measurement of internal features in additive manufactured components by the use of computed tomography
Örebro University, School of Science and Technology.ORCID iD: 0000-0002-9362-8328
Örebro University, School of Science and Technology.ORCID iD: 0000-0003-1286-3420
Örebro University, School of Science and Technology.ORCID iD: 0000-0003-1408-2249
2015 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Additive manufacturing (AM) is a set of manufacturing processes currently in rapid development providing designersnew freedoms in their designs. One distinct difference from other manufacturing methods is the ability to makecomplex internal features which can be of great benefit for applications in many industries. These features can bechannels, cavities, filled or not filled with powder, parts in parts etc. In order for these advantages to be industriallyapplicable there is a need for robust verification methods for these internal features. X-ray computed tomography (CT)holds the promise of being one of the few powerful tools for non-destructive imaging of internal features. In this work,selective laser sintering (SLS) has been used to manufacture parts of a complex geometry containing internal cavities.The test specimens were manufactured in two different materials; Polyamide12 and Titanium (Ti6Al4V). In order toinvestigate the limitations and controllability of the process, the dimensions of the internal cavities were determinedby a correlation of tactile measurements on external features and CT-data. The results were also compared to computeraided design (CAD) data. This work provides some insight concerning part accuracy of today’s frontier of AM systemsand the ability to measure and characterize internal features using CT.

Place, publisher, year, edition, pages
Non destructive testing , 2015.
Keyword [en]
Computed tomography, additive manufacturing, internal features, selective laser melting
National Category
Mechanical Engineering
Research subject
Mechanical Engineering
Identifiers
URN: urn:nbn:se:oru:diva-47801OAI: oai:DiVA.org:oru-47801DiVA: diva2:898046
Conference
Digital Industrial Radiology and Computed Tomography (DIR 2015), Ghent, Belgium, June 22-25, 2015
Available from: 2016-01-27 Created: 2016-01-27 Last updated: 2017-10-18Bibliographically approved
In thesis
1. Only a Shadow: Industrial computed tomography investigation, and method development, concerning complex material systems
Open this publication in new window or tab >>Only a Shadow: Industrial computed tomography investigation, and method development, concerning complex material systems
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The complexity of components fabricated in today's industry is ever increasing. This increase is partly due to market pressure but it is also a result from progress in fabrication technologies that opens up new possibilities. The increased use of additive manufacturing and multi-material systems, especially, has driven the complexity of parts to new heights. The new complex material systems brings benefits in many areas such as; mechanical properties, weight optimisation, and sustainability. However, the increased complexity also makes material integrity investigations and dimensional control more difficult. In additive manufacturing, for example, internal features can be fabricated which cannot be seen or measured with conventional tools. There is thus a need for non-destructive inspection methods that can measure these geometries. Such a method is X-ray computed tomography. Computed tomography utilizes the X-rays ability to penetrate material to create 3D digital volumes of components. Measurements and material investigations can be performed in these volumes without any damage to the investigated component. However, computed tomography in material science is still not a fully mature method and there are many uncertainties associated with the investigation technique. In the work presented in this thesis geometries fabricated by various additive manufacturing processes have been investigated using computed tomography. Also in this work, a dual-energy computed tomography tool has been developed with the aim to increase the measurement consistency of computed tomography when investigating complex geometries and material combinations.

Place, publisher, year, edition, pages
Örebro: Örebro University, 2016. 61 p.
Series
Örebro Studies in Technology, ISSN 1650-8580 ; 73
Keyword
Computed tomography, Dual-energy, Material investigation, Additive manufacturing, Measurement consistency
National Category
Other Mechanical Engineering
Research subject
Mechanical Engineering
Identifiers
urn:nbn:se:oru:diva-54880 (URN)978-91-87789-10-6 (ISBN)
Presentation
2017-01-19, HSM, Örebro universitet, Örebro, 13:15 (English)
Opponent
Supervisors
Projects
MultiMatCT
Available from: 2017-02-03 Created: 2017-01-20 Last updated: 2017-10-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Paper

Search in DiVA

By author/editor
Jansson, AntonZekavat, Amir RezaPejryd, Lars
By organisation
School of Science and Technology
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

Total: 294 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf