oru.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Influence of Sliding Friction on Optimal Topologies
Department of Mechanical Engineering, Jönköping University, Jönköping, Sweden.ORCID iD: 0000-0001-6821-5727
2013 (English)In: Recent Advances in Contact Mechanics: Papers Collected at the 5th Contact Mechanics International Symposium (CMIS2009), Springer Berlin/Heidelberg, 2013, Vol. 56, p. 327-336Conference paper, Published paper (Refereed)
Resource type
Text
Abstract [en]

In this paper the influence of sliding friction on optimal topologies is investigated and some preliminary results are presented. A design domain unilaterally constrained by a spinning support is considered. Most recently, Stromberg and Klarbring have developed methods for performing topology optimization of linear elastic structures with unilateral contact conditions. In this works sliding friction is also included in the contact model. In such manner it is possible to study how the spinning of the support will influence the optimal design. This was not possible before. The support is modeled by Signorini's contact conditions and Coulomb's law of friction. Signorini's contact conditions are regularized by a smooth approximation, which must not be confused with the well-known penalty approach. The state of the system, which is defined by the equilibrium equations and the smooth approximation, is solved by a Newton method. The design parametrization is obtained by using the SIMP-model. The minimization of compliance for a limited value of volume is considered. The optimization problem is solved by a nested approach where the equilibrium equations are linearized and sensitivities are calculated by the adjoint method. The problem is then solved by SLP, where the LP-problem is solved by an interior point method that is available in the package of Mat lab. In order to avoid mesh-dependency and patterns of checker-boards the sensitivities are filtered by Sigmund's filter. The method is implemented by using Mat lab and Visual Fortran, where the Fortran code is linked to Mat lab as mex-files. The implementation is done for a general design domain in 2D by using fully integrated isoparametric elements. The implementation seems to be very efficient and robust.

Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2013. Vol. 56, p. 327-336
Series
Lecture Notes in Applied and Computational Mechanics, ISSN 1613-7736 ; 56
National Category
Mechanical Engineering Applied Mechanics
Research subject
Mechanical Engineering
Identifiers
URN: urn:nbn:se:oru:diva-48284DOI: 10.1007/978-3-642-33968-4_20ISI: 000315535300020Scopus ID: 2-s2.0-84870737711ISBN: 978-3-642-33967-7 (print)OAI: oai:DiVA.org:oru-48284DiVA, id: diva2:904483
Conference
5th Contact Mechanics International Symposium (CMIS2009), Chania, Greece, April 28-30, 2009
Available from: 2007-12-17 Created: 2016-02-15 Last updated: 2017-10-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Strömberg, Niclas

Search in DiVA

By author/editor
Strömberg, Niclas
Mechanical EngineeringApplied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 398 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf