The development of algorithms for mapping gas distributions and localising gas sources is a challenging task, because gas dispersion is a highly dynamic process and it is impossible to capture ground truth data. Fluid-mechanical simulations are a suitable way to support the development of these algorithms. Several tools for gas dispersion simulation have been developed, but they are not suitable for simulations of large outdoor environments. In this paper, we present a concept of how an existing simulator can be extended to handle both indoor and large outdoor scenarios.
Remote gas sensors like those based on the Tunable Diode Laser Absorption Spectroscopy (TDLAS) enable mobile robots to scan huge areas for gas concentrations in reasonable time and are therefore well suited for tasks such as gas emission surveillance and environmental monitoring. A further advantage of remote sensors is that the gas distribution is not disturbed by the sensing platform itself if the measurements are carried out from a sufficient distance, which is particularly interesting when a rotary-wing platform is used. Since there is no possibility to obtain ground truth measurements of gas distributions, simulations are used to develop and evaluate suitable olfaction algorithms. For this purpose several models of in-situ gas sensors have been developed, but models of remote gas sensors are missing. In this paper we present two novel 3D ray-tracer-based TDLAS sensor models. While the first model simplifies the laser beam as a line, the second model takes the conical shape of the beam into account. Using a simulated gas plume, we compare the line model with the cone model in terms of accuracy and computational cost and show that the results generated by the cone model can differ significantly from those of the line model.
In this paper, we present and validate the concept of an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) gas sensor with a 3-axis aerial stabilization gimbal for aiming at a versatile octocopter. While the TDLAS sensor provides integral gas concentration measurements, it does not measure the distance traveled by the laser diode?s beam nor the distribution of gas along the optical path. Thus, we complement the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from a set of integral concentration measurements. To allow for a fundamental ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present results showing its performance characteristics and 2D plume reconstruction capabilities under realistic conditions. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO).