oru.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abrikossova, Natalia
    et al.
    Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden .
    Skoglund, Caroline
    Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden; Division of Clinical Medicine, Department of Biomedicine, Örebro University, Örebro, Sweden.
    Ahrén, Maria
    Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
    Bengtsson, Torbjörn
    Örebro University, School of Health and Medical Sciences, Örebro University, Sweden. Division of Clinical Medicine, Department of Biomedicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
    Uvdal, Kajsa
    Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
    Effects of gadolinium oxide nanoparticles on the oxidative burst from human neutrophil granulocytes2012In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 23, no 27, article id 275101Article in journal (Refereed)
    Abstract [en]

    We have previously shown that gadolinium oxide (Gd2O3) nanoparticles are promising candidates to be used as contrast agents in magnetic resonance (MR) imaging applications. In this study, these nanoparticles were investigated in a cellular system, as possible probes for visualization and targeting intended for bioimaging applications. We evaluated the impact of the presence of Gd2O3 nanoparticles on the production of reactive oxygen species (ROS) from human neutrophils, by means of luminol-dependent chemiluminescence. Three sets of Gd2O3 nanoparticles were studied, i.e. as synthesized, dialyzed and both PEG-functionalized and dialyzed Gd2O3 nanoparticles. In addition, neutrophil morphology was evaluated by fluorescent staining of the actin cytoskeleton and fluorescence microscopy. We show that surface modification of these nanoparticles with polyethylene glycol (PEG) is essential in order to increase their biocompatibility. We observed that the as synthesized nanoparticles markedly decreased the ROS production from neutrophils challenged with prey (opsonized yeast particles) compared to controls without nanoparticles. After functionalization and dialysis, more moderate inhibitory effects were observed at a corresponding concentration of gadolinium. At lower gadolinium concentration the response was similar to that of the control cells. We suggest that the diethylene glycol (DEG) present in the as synthesized nanoparticle preparation is responsible for the inhibitory effects on the neutrophil oxidative burst. Indeed, in the present study we also show that even a low concentration of DEG, 0.3%, severely inhibits neutrophil function. In summary, the low cellular response upon PEG-functionalized Gd2O3 nanoparticle exposure indicates that these nanoparticles are promising candidates for MR-imaging purposes.

  • 2.
    Odebo Länk, Nils
    et al.
    Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
    Verre, Ruggero
    Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
    Johansson, Peter
    Örebro University, School of Science and Technology. Department of Physics, Chalmers University of Technology, Göteborg, Sweden; School of Science and Technology, Örebro University, Örebro, Sweden .
    Käll, Mikael
    Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
    Large-Scale Silicon Nanophotonic Metasurfaces with Polarization Independent Near-Perfect Absorption2017In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, no 5, p. 3054-3060Article in journal (Refereed)
    Abstract [en]

    Optically thin perfect light absorbers could find many uses in science and technology. However, most physical realizations of perfect absorption for the optical range rely on plasmonic excitations in nanostructured metallic metasurfaces, for which the absorbed light energy is quickly lost as heat due to rapid plasmon decay. Here we show that a silicon metasurface excited in a total internal reflection configuration can absorb at least 97% of incident near-infrared light due to interferences between coherent electric and magnetic dipole scattering from the silicon nanopillars that build up the metasurface and the reflected wave from the supporting glass substrate. This "near-perfect" absorption phenomenon loads more than 50 times more light energy into the semiconductor than what would be the case for a uniform silicon sheet of equal surface density, irrespective of incident polarization. We envisage that the concept could be used for the development of novel light harvesting and optical sensor devices.

  • 3.
    Sørensen, Mads Peter
    et al.
    Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
    Falsig Pedersen, Niels
    Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
    Ögren, Magnus
    Örebro University, School of Science and Technology.
    The dynamics of magnetic vortices in type II superconductors with pinning sites studied by the time dependent Ginzburg–Landau model2017In: Physica. C, Superconductivity, ISSN 0921-4534, E-ISSN 1873-2143, Vol. 533, p. 40-43Article in journal (Refereed)
    Abstract [en]

    We investigate the dynamics of magnetic vortices in type II superconductors with normal state pinning sites using the Ginzburg–Landau equations. Simulation results demonstrate hopping of vortices between pinning sites, influenced by external magnetic fields and external currents. The system is highly nonlinear and the vortices show complex nonlinear dynamical behaviour.

  • 4.
    Ögren, Magnus
    Mathematical Physics, LTH, Lund University, Lund, Sweden.
    Lärarhandledning [Teacher's manual] till: Kvantvärldens fenomen: teori och begrepp2006Book (Other academic)
  • 5.
    Ögren, Magnus
    Nano Science Center, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
    Predicting the Petrophysical Parameters from the Nanoscale Properties of Chalk2013Report (Other academic)
  • 6.
    Ögren, Magnus
    Mathematical Physics, LTH, Lund University, Lund, Sweden.
    Problem med lösningar till kvantmekanik: fördjupningskurs2006Book (Other academic)
  • 7.
    Ögren, Magnus
    et al.
    Dept. of Mathematics, Technical University of Denmark, Kongens Lyngby, Denmark.
    Sørensen, M. P.
    Dept. of Mathematics, Technical University of Denmark, Kongens Lyngby, Denmark.
    Pedersen, N. F.
    Dept. of Mathematics, Technical University of Denmark, Kongens Lyngby, Denmark.
    Self-consistent Ginzburg-Landau theory for transport currents in superconductors2012In: Physica. C, Superconductivity, ISSN 0921-4534, E-ISSN 1873-2143, Vol. 479, p. 157-159Article in journal (Refereed)
    Abstract [en]

    We elaborate on boundary conditions for Ginzburg-Landau (GL) theory in the case of external currents. We implement a self-consistent theory within the finite element method (FEM) and present numerical results for a two-dimensional rectangular geometry. We emphasize that our approach can in principle also be used for general geometries in three-dimensional superconductors. © 2012 Elsevier B.V. All rights reserved.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf