oru.sePublikasjoner
Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Baxter, Charles J
    et al.
    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom.
    Redestig, Henning
    Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.
    Schauer, Nicolas
    Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.
    Repsilber, Dirk
    ax-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.
    Patil, Kiran R
    Center for Microbial Biotechnology, BioCentrum Technical University of Denmark, Kongens Lyngby, Denmark.
    Nielsen, Jens
    Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.
    Selbig, Joachim
    Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.
    Liu, Junli
    Genetics Programme, Scottish Crop Research Institute, Dundee, United Kingdom .
    Fernie, Alisdair R
    Max-Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.
    Sweetlove, Lee J
    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom.
    The metabolic response of heterotrophic Arabidopsis cells to oxidative stress2007Inngår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 143, nr 1, s. 312-25Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To cope with oxidative stress, the metabolic network of plant cells must be reconfigured either to bypass damaged enzymes or to support adaptive responses. To characterize the dynamics of metabolic change during oxidative stress, heterotrophic Arabidopsis (Arabidopsis thaliana) cells were treated with menadione and changes in metabolite abundance and (13)C-labeling kinetics were quantified in a time series of samples taken over a 6 h period. Oxidative stress had a profound effect on the central metabolic pathways with extensive metabolic inhibition radiating from the tricarboxylic acid cycle and including large sectors of amino acid metabolism. Sequential accumulation of metabolites in specific pathways indicated a subsequent backing up of glycolysis and a diversion of carbon into the oxidative pentose phosphate pathway. Microarray analysis revealed a coordinated transcriptomic response that represents an emergency coping strategy allowing the cell to survive the metabolic hiatus. Rather than attempt to replace inhibited enzymes, transcripts encoding these enzymes are in fact down-regulated while an antioxidant defense response is mounted. In addition, a major switch from anabolic to catabolic metabolism is signaled. Metabolism is also reconfigured to bypass damaged steps (e.g. induction of an external NADH dehydrogenase of the mitochondrial respiratory chain). The overall metabolic response of Arabidopsis cells to oxidative stress is remarkably similar to the superoxide and hydrogen peroxide stimulons of bacteria and yeast (Saccharomyces cerevisiae), suggesting that the stress regulatory and signaling pathways of plants and microbes may share common elements.

  • 2.
    Morales, Luis Orlando
    et al.
    Helsinki University, Helsinki, Finland.
    Brosché, Mikael
    Helsinki University, Helsinki, Finland.
    Vainonen, Julia
    Helsinki University, Helsinki, Finland.
    Jenkins, Gareth I
    Glasgow University, Glasgow, UK.
    Wargent, Jason J
    Massey University, Palmerston North, Nya Zeeland.
    Sipari, Nina
    University of Helsinki, Helsinki, Finland.
    Strid, Åke
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Lindfors, Anders V
    Finnish Meteorological Institute, Kuopio, Finland.
    Tegelberg, Riita
    University of Eastern Finland, Joensuu, Finland.
    Aphalo, Pedro J
    Helsinki University, Helsinki, Finland.
    Multiple Roles for UV RESISTANCE LOCUS 8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar UV Radiation2013Inngår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 161, nr 2, s. 744-759Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Photomorphogenic responses triggered by low fluence rates of ultraviolet-B radiation (UV-B, 280-315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis thaliana and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315-400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS 1 (PDX1) accumulation and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction and defence against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation, but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV.

  • 3.
    Scherbak, Nikolai
    et al.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Ala-Häiväla, Anneli
    Brosché, Mikael
    Helsingfors Universitet, Helsingfors, Finland.
    Böwer, Nathalie
    Strid, Hilja
    Örebro universitet, Hälsoakademin.
    Gittins, John R.
    University of Southampton, Southampton, UK.
    Grahn, Elin M.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Eriksson, Leif A.
    National University of Ireland, Galway, Ireland.
    Strid, Åke
    Örebro universitet, Akademin för naturvetenskap och teknik.
    The pea SAD short-chain dehydrogenase/reductase: quinone reduction, tissue distribution, and heterologous expression2011Inngår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 155, nr 4, s. 1839-1850Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The pea (Pisum sativum) tetrameric short-chain alcohol dehydrogenase-like protein (SAD) family consists of at least three highly similar members (SAD-A, -B, and -C). According to mRNA data, environmental stimuli induce SAD expression. The aim of this study was to characterize the SAD proteins by examining their catalytic function, distribution in pea, and induction in different tissues. In enzyme activity assays using a range of potential substrates, the SAD-C enzyme was shown to reduce one- or two-ring-membered quinones lacking long hydrophobic hydrocarbon tails. Immunological assays using a specific antiserum against the protein demonstrated that different tissues and cell types contain small amounts of SAD protein that was predominantly located within epidermal or subepidermal cells and around vascular tissue. Particularly high local concentrations were observed in the protoderm of the seed cotyledonary axis. Two bow-shaped rows of cells in the ovary and the placental surface facing the ovule also exhibited considerable SAD staining. Ultraviolet-B irradiation led to increased staining in epidermal and subepidermal cells of leaves and stems. The different localization patterns of SAD suggest functions both in development and in responses to environmental stimuli. Finally, the pea SAD-C promoter was shown to confer heterologous wound-induced expression in Arabidopsis (Arabidopsis thaliana), which confirmed that the inducibility of its expression is regulated at the transcriptional level.

1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf