oru.sePublications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Amigoni, Francesco
    et al.
    Politecnico di Milano, Milan, Italy.
    Yu, Wonpil
    Electronics and Telecommunications Research Institute (ETRI), Daejeon, South Korea.
    Andre, Torsten
    University of Klagenfurt, Klagenfurt, Austria.
    Holz, Dirk
    University of Bonn, Bonn, Germany.
    Magnusson, Martin
    Örebro University, School of Science and Technology.
    Matteucci, Matteo
    Politecnico di Milano, Milan, Italy.
    Moon, Hyungpil
    Sungkyunkwan University, Suwon, South Korea.
    Yokozuka, Masashi
    Nat. Inst. of Advanced Industrial Science and Technology, Tsukuba, Japan.
    Biggs, Geoffrey
    Nat. Inst. of Advanced Industrial Science and Technology, Tsukuba, Japan.
    Madhavan, Raj
    Amrita University, Clarksburg MD, United States of America.
    A Standard for Map Data Representation: IEEE 1873-2015 Facilitates Interoperability Between Robots2018In: IEEE robotics & automation magazine, ISSN 1070-9932, E-ISSN 1558-223X, Vol. 25, no 1, p. 65-76Article in journal (Refereed)
    Abstract [en]

    The availability of environment maps for autonomous robots enables them to complete several tasks. A new IEEE standard, IEEE 1873-2015, Robot Map Data Representation for Navigation (MDR) [15], sponsored by the IEEE Robotics and Automation Society (RAS) and approved by the IEEE Standards Association Standards Board in September 2015, defines a common representation for two-dimensional (2-D) robot maps and is intended to facilitate interoperability among navigating robots. The standard defines an extensible markup language (XML) data format for exchanging maps between different systems. This article illustrates how metric maps, topological maps, and their combinations can be represented according to the standard.

  • 2.
    Andreasson, Henrik
    et al.
    Örebro University, School of Science and Technology.
    Bouguerra, Abdelbaki
    Örebro University, School of Science and Technology.
    Cirillo, Marcello
    Örebro University, School of Science and Technology.
    Dimitrov, Dimitar Nikolaev
    INRIA - Grenoble, Meylan, France.
    Driankov, Dimiter
    Örebro University, School of Science and Technology.
    Karlsson, Lars
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Pecora, Federico
    Örebro University, School of Science and Technology.
    Saarinen, Jari Pekka
    Örebro University, School of Science and Technology. Aalto University, Espo, Finland .
    Sherikov, Aleksander
    Centre de recherche Grenoble Rhône-Alpes, Grenoble, France .
    Stoyanov, Todor
    Örebro University, School of Science and Technology.
    Autonomous transport vehicles: where we are and what is missing2015In: IEEE robotics & automation magazine, ISSN 1070-9932, E-ISSN 1558-223X, Vol. 22, no 1, p. 64-75Article in journal (Refereed)
    Abstract [en]

    In this article, we address the problem of realizing a complete efficient system for automated management of fleets of autonomous ground vehicles in industrial sites. We elicit from current industrial practice and the scientific state of the art the key challenges related to autonomous transport vehicles in industrial environments and relate them to enabling techniques in perception, task allocation, motion planning, coordination, collision prediction, and control. We propose a modular approach based on least commitment, which integrates all modules through a uniform constraint-based paradigm. We describe an instantiation of this system and present a summary of the results, showing evidence of increased flexibility at the control level to adapt to contingencies.

  • 3.
    Di Rocco, Maurizio
    et al.
    Örebro University, School of Science and Technology. Roma Tre University, Rome, Italy.
    La Gala, Francesco
    Marine Technology Research Institute (INSEAN), Rome, Italy.
    Ulivi, Giovanni
    Roma Tre University, Rome, Italy.
    Testing Multirobot Algorithms SAETTA: A Small and Cheap Mobile Unit2013In: IEEE robotics & automation magazine, ISSN 1070-9932, E-ISSN 1558-223X, Vol. 20, no 2, p. 52-62Article in journal (Other academic)
  • 4.
    Neumann, Patrick P.
    et al.
    BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
    Asadi, Sahar
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Bartholmai, Matthias
    Sensors and Measurement Systems Working Group, BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
    Schiller, Jochen H.
    Computer Systems and Telematics Working Group, Institute of Computer Science, Freie Universität, Berlin, Germany.
    Autonomous gas-sensitive microdrone wind vector estimation and gas distribution mapping2012In: IEEE robotics & automation magazine, ISSN 1070-9932, E-ISSN 1558-223X, Vol. 19, no 1, p. 50-61Article in journal (Refereed)
    Abstract [en]

    This article presents the development and validation of an autonomous, gas sensitive microdrone that is capable of estimating the wind vector in real time using only the onboard control unit of the microdrone and performing gas distribution mapping (DM). Two different sampling approaches are suggested to address this problem. On the one hand, a predefined trajectory is used to explore the target area with the microdrone in a real-world gas DM experiment. As an alternative sampling approach, we introduce an adaptive strategy that suggests next sampling points based on an artificial potential field (APF). Initial results in real-world experiments demonstrate the capability of the proposed adaptive sampling strategy for gas DM and its use for gas source localization.

  • 5.
    Stoyanov, Todor
    et al.
    Örebro University, School of Science and Technology.
    Vaskevicius, Narunas
    Jacobs University Bremen, Bremen, Germany.
    Mueller, Christian Atanas
    Jacobs University Bremen, Bremen, Germany.
    Fromm, Tobias
    Jacobs University Bremen, Bremen, Germany.
    Krug, Robert
    Örebro University, School of Science and Technology.
    Tincani, Vinicio
    University of Pisa, Pisa, Italy.
    Mojtahedzadeh, Rasoul
    Örebro University, School of Science and Technology.
    Kunaschk, Stefan
    Bremer Institut für Produktion und Logistik (BIBA), Bremen, Germany.
    Ernits, R. Mortensen
    Bremer Institut für Produktion und Logistik (BIBA), Bremen, Germany.
    Canelhas, Daniel R.
    Örebro University, School of Science and Technology.
    Bonilla, Manuell
    University of Pisa, Pisa, Italy.
    Schwertfeger, Soeren
    ShanghaiTech University, Shanghai, China.
    Bonini, Marco
    Reutlingen University, Reutlingen, Germany.
    Halfar, Harry
    Reutlingen University, Reutlingen, Germany.
    Pathak, Kaustubh
    Jacobs University Bremen, Bremen, Germany.
    Rohde, Moritz
    Bremer Institut für Produktion und Logistik (BIBA), Bremen, Germany.
    Fantoni, Gualtiero
    University of Pisa, Pisa, Italy.
    Bicchi, Antonio
    Università di Pisa & Istituto Italiano di Tecnologia, Genova, Italy.
    Birk, Andreas
    Jacobs University, Bremen, Germany.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Echelmeyer, Wolfgang
    Reutlingen University, Reutlingen, Germany.
    No More Heavy Lifting: Robotic Solutions to the Container-Unloading Problem2016In: IEEE robotics & automation magazine, ISSN 1070-9932, E-ISSN 1558-223X, Vol. 23, no 4, p. 94-106Article in journal (Refereed)
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf