oru.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Grandin, Anna
    et al.
    Ogar, Anna
    Institute of Environmental Science, Jagiellonian University, Krakow, Poland.
    Sjöberg, Viktor
    Örebro University, School of Science and Technology.
    Allard, Bert
    Örebro University, School of Science and Technology.
    Karlsson, Stefan
    Örebro University, School of Science and Technology.
    Potential use of native fungal strains for assisted uranium retention2015In: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 81, p. 173-178Article in journal (Refereed)
    Abstract [en]

    Uranium-stabilizing ligands can be useful complexing agents for uranium in aqueous solution. The discovery of novel ligand candidates for selective uranium capture in artificial and natural waters could provide scope for their use in water remediation and metal recovery from low- and high grade ores. In this study we used seven fungal strains, isolated from shale waste, to monitor the uranium retention capacity from an aqueous solution. After four weeks of incubation, suspensions containing the fungal strains were filtered, and up to 100% of the total uranium inventory was removed from a 10 mg L-1 solution. Approximately 70% of the total uranium removal is attributed to complexation and/or adsorption by particles in the malt extract and some 10% is adsorbed by the fungal biomass. The additional 20% uranium removed could be related to the excretion of fungal metabolites. From 58% to 90% of the uranium is removed within ten minutes. The formation of colloidal/particulate uranium is proposed to be controlled by organic ligands in the culture medium and organic ligands excreted by the fungi where phosphorus moieties seem to be important. Membrane fouling by the hydrocarbons is also suggested to contribute to a loss of uranium from the aqueous phase.

  • 2.
    Sjöberg, Viktor
    et al.
    Örebro University, School of Science and Technology.
    Karlsson, Stefan
    Örebro University, School of Science and Technology.
    Impact of organic carbon on the leachability of vanadium, manganese, iron and molybdenum from shale residues2015In: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 75, p. 100-109Article in journal (Refereed)
    Abstract [en]

    From 1942 to the 1966, oil was produced by pyrolysis of shale, in Kvarntorp, Sweden. This generated some 40 million m3 of metal rich pyrolyzed shale and discarded fines that were piled on site with its original metal content almost intact. The present study focuses on the leaching of vanadium, manganese, iron and molybdenum from fines after addition of wood chips and steel slag, in outdoor 1 m3 reactor systems at low liquid to solid ratio, in order to evaluate the potential environmental impact and recovery of the elements from the leachates. Seasonal variations were observed, with increased leaching during peak summer. For vanadium and molybdenum, high addition of wood chips decreased the leaching, probably due to adsorption. Manganese showed the opposite behavior while leaching of iron was almost independent of the amount of wood chips. Depending on the systems, up to 2200 μg L-1 vanadium, 90 μg L-1 molybdenum, 25 mg L-1 manganese and 500 mg L-1 iron was found in the aqueous phase. Applied to the 40 million m3 pile, the annual leaching of those elements may reach 14 ton, 0.6 ton, 200 ton and 2400 ton, respectively.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf