oru.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Elvers, Margitta
    et al.
    Medizinische Klinik III, Dept. of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany.
    Grenegård, Magnus
    Faculty of Health Sciences, Department of Medicine and Health, Division of Drug Research/Pharmacology, University of Linköping, Linköping, Sweden.
    Khoshjabinzadeh, Hanieh
    Department of Clinical and Experimental Medicine, Division of Clinical Chemistry, University of Linköping, Linköping, Sweden.
    Münzer, Patrick
    Department of Physiology, Eberhard Karls University, Tübingen, Germany.
    Borst, Oliver
    Medizinische Klinik III, Dept. of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany; Department of Physiology, Eberhard Karls University, Tübingen, Germany.
    Tian, Huasong
    Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, USA.
    Di Paolo, Gilbert
    Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, USA.
    Lang, Florian
    Department of Physiology, Eberhard Karls University, Tübingen, Germany.
    Gawaz, Meinrad
    Medizinische Klinik III, Dept. of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany.
    Lindahl, Tomas L
    Department of Clinical and Experimental Medicine, Division of Clinical Chemistry, Linköping University, Linköping, Sweden.
    Fälker, Knut
    Department of Clinical and Experimental Medicine, Division of Clinical Chemistry, Linköping University, Linköping, Sweden.
    A novel role for phospholipase D as an endogenous negative regulator of platelet sensitivity2012In: Cellular Signalling, ISSN 0898-6568, E-ISSN 1873-3913, Vol. 24, no 9, p. 1743-52Article in journal (Refereed)
    Abstract [en]

    Platelet aggregation, secretion and thrombus formation play a critical role in primary hemostasis to prevent excessive blood loss. On the other hand, uncontrolled platelet activation leads to pathological thrombus formation resulting in myocardial infarction or stroke. Stimulation of heterotrimeric G-proteins by soluble agonists or immunoreceptor tyrosine based activation motif-coupled receptors that interact with immobilized ligands such as the collagen receptor glycoprotein (GP) VI lead to the activation of phospholipases that cleave membrane phospholipids to generate soluble second messengers. Platelets contain the phospholipases (PL) D1 and D2 which catalyze the hydrolysis of phosphatidylcholine to generate the second messenger phosphatidic acid (PA). The production of PA is abrogated by primary alcohols that have been widely used for the analysis of PLD-mediated processes. However, it is not clear if primary alcohols effectively reduce PA generation or if they induce PLD-independent cellular effects. In the present study we made use of the specific PLD inhibitor 5-fluoro-2-indolyl des-chlorohalopemide (FIPI) and show for the first time, that FIPI enhances platelet dense granule secretion and aggregation of human platelets. Further, FIPI has no effect on cytosolic Ca(2+) activity but needs proper Rho kinase signaling to mediate FIPI-induced effects on platelet activation. Upon FIPI treatment the phosphorylation of the PKC substrate pleckstrin was prominently enhanced suggesting that FIPI affects PKC-mediated secretion and aggregation in platelets. Similar effects of FIPI were observed in platelets from mouse wild-type and Pld1(-/-) mice pointing to a new role for PLD2 as a negative regulator of platelet sensitivity.

  • 2.
    Fälker, Knut
    et al.
    Örebro University, School of Health and Medical Sciences, Örebro University, Sweden. Department of Biomedicine; Dept Clin & Expt Med, Linköping Univ, Linköping, Sweden.
    Klarström-Engström, Kristin
    Örebro University, School of Health and Medical Sciences, Örebro University, Sweden. Department of Biomedicine.
    Bengtsson, Torbjörn
    Örebro University, School of Health and Medical Sciences, Örebro University, Sweden. Department of Biomedicine.
    Lindahl, Tomas L.
    Dept Clin & Expt Med, Linköping Univ, Linköping, Sweden.
    Grenegård, Magnus
    Örebro University, School of Medicine, Örebro University, Sweden. Department of Biomedicine.
    The Toll-like receptor 2/1 (TLR2/1) complex initiates human platelet activation via the src/Syk/LAT/PLC gamma 2 signalling cascade2014In: Cellular Signalling, ISSN 0898-6568, E-ISSN 1873-3913, Vol. 26, no 2, p. 279-286Article in journal (Refereed)
    Abstract [en]

    The specific TLR2/1 complex activator Pam3CSK4 has been shown to provoke prominent activation and aggregation of human non-nucleated platelets. As Pam3CSK4-evoked platelet activation does not employ the major signalling pathway established in nucleated immune cells, we investigated if the TLR2/1 complex on platelets may initiate signalling pathways known to be induced by physiological agonists such as collagen via GPVI or thrombin via PARs. We found that triggering TLR2/1 complex-signalling with Pam3CSK4, in common with that induced via GPVI, and in contrast to that provoked by PARS, involves tyrosine phosphorylation of the adaptor protein LAT as well as of PLC gamma 2 in a src- and Syk-dependent manner. In this respect, we provide evidence that Pam3CSK4 does not cross-activate GPVI. Further, by the use of platelets from a Glanzmann's thrombasthenia patient lacking beta(3), in contrast to findings in nucleated immune cells, we show that the initiation of platelet activation by Pam3CSK4 does not involve integrin beta(3) signalling; whereas the latter, subsequent to intermediate TXA2 synthesis and signalling, was found to be indispensable for proper dense granule secretion and full platelet aggregation. Together, our findings reveal that triggering the TLR2/1 complex with Pam3CSK4 initiates human platelet activation by engaging tyrosine kinases of the src family and Syk, the adaptor protein LAT, as well as the key mediator PLC gamma 2. (C) 2013 Elsevier Inc. All rights reserved.

  • 3.
    Fälker, Knut
    et al.
    Örebro University, School of Medical Sciences. Cardiovascular Research Centre (CVRC).
    Ljungberg, Liza
    Örebro University, School of Medical Sciences. Cardiovascular Research Centre (CVRC).
    Kardeby, Caroline
    Örebro University, School of Medical Sciences. Cardiovascular Research Centre (CVRC).
    Lindkvist, Madelene
    Örebro University, School of Medical Sciences. Cardiovascular Research Centre (CVRC).
    Sirsjö, Allan
    Örebro University, School of Medical Sciences. Cardiovascular Research Centre (CVRC).
    Grenegård, Magnus
    Örebro University, School of Medical Sciences. Cardiovascular Research Centre (CVRC).
    Adrenoceptor α2A signalling countervails the taming effects of synchronous cyclic nucleotide-elevation on thrombin-induced human platelet activation and aggregation2019In: Cellular Signalling, ISSN 0898-6568, E-ISSN 1873-3913, Vol. 59, p. 96-109Article in journal (Refereed)
    Abstract [en]

    The healthy vascular endothelium constantly releases autacoids which cause an increase of intracellular cyclic nucleotides to tame platelets from inappropriate activation. Elevating cGMP and cAMP, in line with previous reports, cooperated in the inhibition of isolated human platelet intracellular calcium-mobilization, dense granules secretion, and aggregation provoked by thrombin. Further, platelet alpha granules secretion and, most relevant, integrin αIIaβ3 activation in response to thrombin are shown to be prominently affected by the combined elevation of cGMP and cAMP. Since stress-related sympathetic nervous activity is associated with an increase in thrombotic events, we investigated the impact of epinephrine in this setting. We found that the assessed signalling events and functional consequences were to various extents restored by epinephrine, resulting in full and sustained aggregation of isolated platelets. The restoring effects of epinephrine were abolished by either interfering with intracellular calcium-elevation or with PI3-K signalling. Finally, we show that in our experimental setting epinephrine likewise reconstitutes platelet aggregation in heparinized whole blood, which may indicate that this mechanism could also apply in vivo.

  • 4.
    Söderholm, Helena
    et al.
    Tumour Biology, Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
    Olsson, Anna-Karin
    Tumour Biology, Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
    Lavenius, Erik
    Tumour Biology, Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
    Rönnstrand, Lars
    The Ludwig Institute for Cancer Research, Biomedical Centre, Uppsala, Sweden.
    Nånberg, Eewa
    Tumour Biology, Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
    Activation of Ras, Raf-1 and protein kinase C in differentiating human neuroblastoma cells after treatment with phorbolester and NGF2001In: Cellular Signalling, ISSN 0898-6568, E-ISSN 1873-3913, Vol. 13, no 2, p. 95-104Article in journal (Refereed)
    Abstract [en]

    The human neuroblastoma cell line SH-SY5Y/TrkA differentiates in vitro and acquires a sympathetic phenotype in response to phorbolester (activator of protein kinase C, PKC) in the presence of serum or growth factors, or nerve growth factor (NGF). We have now investigated to what extent phorbolester and NGF cause activation of Ras and Raf-1 and the involvement of PKC in this response in differentiating SH-SY5Y/TrkA cells. NGF stimulated increased accumulation of Ras-GTP and a threefold activation of Raf-1. In contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA) had no effect on the amount of Ras-GTP but led to a smaller activation of Raf-1. NGF caused a limited increase in phosphorylation of Raf-1 compared with TPA, and NGF-induced Raf activity was independent of PKC. Analysis of phosphorylation of the endogenous PKC substrate myristoylated alanine-rich C-kinase substrate (MARCKS), and of subcellular distribution of PKC-alpha, -delta, and -epsilon revealed that NGF only caused a very small activation of PKC in SH-SY5Y/TrkA cells. The results identify Raf-1 as a target for both TPA- and NGF-induced signals in differentiating SH-SY5Y/TrkA cells and demonstrate that signalling to Raf-1 was mediated via distinct mechanisms.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf