oru.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Akner, Gunnar
    et al.
    Örebro University, School of Health and Medical Sciences.
    Wikström, A. C.
    Mossberg, K.
    Sundqvist, K. G.
    Gustafsson, J. A.
    Morphometric studies of the localization of the glucocorticoid receptor in mammalian cells and of glucocorticoid hormone-induced effects1994In: Journal of Histochemistry and Cytochemistry, ISSN 0022-1554, E-ISSN 1551-5044, Vol. 42, no 5, p. 645-657Article in journal (Refereed)
    Abstract [en]

    We studied the subcellular distribution of the glucocorticoid receptor (GR) by light microscopy (LM) and confocal laser scanning microscopy (CLSM) in different mammalian cell types. The effect of added glucocorticoid hormones on GR distribution was investigated by photometric quantitation on optical sections obtained by CLSM followed by statistical analysis. In the control interphase cytoplasm, the distribution of GR was fibrillar in some and diffuse in other cell types. Fibrillar GR was distributed along cytoplasmic microtubules (MTs) with predilection for a subset of MTs. GR was also observed in the centrosomes. Nuclear GR was both diffuse and granular in distribution. During cell division, GR appeared in the mitotic apparatus at all stages of mitosis. These findings were not fixation-dependent. Glucocorticoid treatment increased both the nuclear and cytoplasmic GR signal. However, this was detectable only after precipitating but not cross-linking fixation. There was both intra- and intercellular GR heterogeneity in the absence and presence of hormone but no indication of a hormone-induced nuclear translocation of GR. We present a hypothetical model of two independent GR populations in the nucleus and cytoplasm, respectively, without any discernible ligand-induced nuclear translocation of GR. The extranuclear GR population may exert effect(s) on site in the cytoplasm without involving nuclear genomic transcription.

  • 2.
    Karlsson, Christina
    et al.
    Örebro University, School of Health and Medical Sciences.
    Karlsson, Mats G.
    Örebro University, School of Health and Medical Sciences, Örebro University, Sweden. Department of Laboratory Medicine, Örebro University Hospital, Örebro, Sweden.
    Effects of long-term storage on the detection of proteins, DNA, and mRNA in tissue microarray slides2011In: Journal of Histochemistry and Cytochemistry, ISSN 0022-1554, E-ISSN 1551-5044, Vol. 59, no 12, p. 1113-1121Article in journal (Refereed)
    Abstract [en]

    Storage of tissue slides has been claimed to induce dramatically reduced antigen detection particularly for immunohistochemistry (IHC). With tissue microarrays, the necessity to serially cut blocks in order to obtain as much material as possible is obvious. The presumed adverse effect of storage might hamper such an approach. The authors designed an experimental setting consisting of four different storage conditions with storage time of tissue slides of up to 1 year. Detection of proteins, DNA, and mRNA was performed using IHC and in situ hybridization techniques. Slight but significant changes in IHC occurred over time. The most important factor is the primary antibody used: four showed no significant changes, whereas limited decreases in 8 antibodies could be detected by image analysis. Whether the antigen was nuclear or cytoplasmic/membranous did not matter. No major differences between different storage conditions could be shown, but storage at 4C was overall the best procedure. Furthermore, gene copy number aberrations, chromosomal translocations, and the presence of mRNA could be detected on slides stored up to 1 year. In conclusion, in tissues optimally formalin fixed and using modern histological techniques, only minute changes in tissue antigenicity are induced by long-term storage.

  • 3.
    Mohlin, Camilla
    et al.
    Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden.
    Delbro, Dick
    Örebro University, School of Medical Sciences.
    Kvanta, Anders
    Department of Clinical Neuroscience, Section for Ophthalmology and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
    Johansson, Kjell
    Department of Science, Kristianstad University, Kristianstad, Sweden.
    Evaluation of Congo Red Staining in Degenerating Porcine Photoreceptors In Vitro: Protective Effects by Structural and Trophic Support2018In: Journal of Histochemistry and Cytochemistry, ISSN 0022-1554, E-ISSN 1551-5044, Vol. 66, no 9, p. 631-641Article in journal (Refereed)
    Abstract [en]

    Congo red (CR) is a histological stain used for the detection of extracellular amyloids mediating various neurodegenerative diseases. Given that damaged photoreceptors appear to degenerate similarly to other nerve cells, CR staining was evaluated in experimentally injured porcine retina. CR staining appeared mostly as discrete cytosolic deposits with no obvious plaque formation during the investigated time period. Increases of CR labeling coincided temporally with the known accumulation of mislocalized opsins and increases of cell death. Coculture, either with human retinal pigment epithelium (ARPE) or human neural progenitor (ReN) cells, was accompanied by a significant reduction of CR labeling. Of particular interest was the reduction of CR labeling in cone photoreceptors, which are important for the perception of color and fine details and afflicted in age-related macular degeneration (AMD). Electron microscopy revealed inclusions in the inner segment, cell body, and occasionally synaptic terminals of photoreceptor cells in cultured specimens. Closer examinations indicated the presence of different types of inclusions resembling protein aggregates as well as inclusion bodies. The current results indicate that injury-related response resulted in accumulation of CR deposits in photoreceptor cells, and that trophic and/or structural support attenuated this response.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf