To Örebro University

oru.seÖrebro University Publications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Lindh, Martin
    et al.
    Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
    Karlen, Anders
    Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
    Norinder, Ulf
    Swetox, Karolinska Institute, Unit of Toxicology Sciences, Södertälje, Sweden; Department of Computer and Systems Sciences, Stockholm University, Kista, Sweden.
    Predicting the Rate of Skin Penetration Using an Aggregated Conformal Prediction Framework2017In: Molecular Pharmaceutics, ISSN 1543-8384, E-ISSN 1543-8392, Vol. 14, no 5, p. 1571-1576Article in journal (Refereed)
    Abstract [en]

    Skin serves as a drug administration route, and skin permeability of chemicals is of significant interest in the pharmaceutical and cosmetic industries. An aggregated conformal prediction (ACP) framework was used to build models, for predicting the permeation rate (log K-p) of chemical compounds through human skin. The conformal prediction method gives as an output the prediction range at a given level of confidence for each compound, which enables the user to make a more informed decision when, for example, suggesting the next compound to prepare, Predictive models were built using;both the random forest and the support vector machine methods and were based on experimentally derived permeability data on 211 diverse compounds. The derived models were of similar predictive quality as compared to earlier published models but have the extra advantage of not only presenting a single predicted value for each, compound but also a reliable, individually assigned prediction range. The models use calculated descriptors and can quickly predict the skin permeation rate of new compounds.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf