oru.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Vasudevan, S G
    et al.
    Johansson, Magnus
    Brooks, A J
    Llewellyn, L E
    Jans, D A
    Characterisation of inter- and intra-molecular interactions of the dengue virus RNA dependent RNA polymerase as potential drug targets2001In: Il Farmaco, ISSN 0014-827X, E-ISSN 1879-0569, Vol. 56, no 1-2, p. 33-36Article in journal (Refereed)
    Abstract [en]

    Our research is directed towards enhancing the understanding of the molecular biology of dengue virus replication with the ultimate goal being to develop novel antiviral strategies based on preventing critical inter- or intra-molecular interactions required for the normal virus life cycle. The viral RNA-dependent RNA polymerase (NS5) and the viral helicase (NS3) interaction offers a possible target for inhibitors to bind and prevent replication. In this study the yeast-two hybrid system was used to show that a small region of NS5 interacts with NS3, and also with the cellular nuclear transport receptor importin-beta. Furthermore, intramolecular interaction between the two putative domains of NS5 can also be detected by the yeast two-hybrid assay. We have also modified the colony lift assay for the beta-galactosidase reporter activity in intact yeast cells which reflects the strength of interaction between two proteins to a microtiter plate format. This assay offers a unique opportunity to screen for small molecule compounds that block physiologically important interactions.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf