To Örebro University

oru.seÖrebro University Publications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bergström, Per
    et al.
    Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden.
    Khodadad, Davood
    Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden.
    Hällstig, Emil
    Optronic Partner Dp AB, Skellefteå, Sweden.
    Sjödahl, Mikael
    Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden.
    Dual-wavelength digital holography: single-shot shape evaluation using speckle displacements and regularization2014In: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 53, no 1, p. 123-131Article in journal (Refereed)
    Abstract [en]

    This paper discusses the possibility of evaluating the shape of a free-form object in comparison with its shape prescribed by a CAD model. Measurements are made based on a single-shot recording using dual-wavelength holography with a synthetic wavelength of 1.4 mm. Each hologram is numerically propagated to different focus planes and correlated. The result is a vector field of speckle displacements that is linearly dependent on the local distance between the measured surface and the focus plane. From these speckle displacements, a gradient field of the measured surface is extracted through a proportional relationship. The gradient field obtained from the measurement is then aligned to the shape of the CAD model using the iterative closest point (ICP) algorithm and regularization. Deviations between the measured shape and the CAD model are found from the phase difference field, giving a high precision shape evaluation. The phase differences and the CAD model are also used to find a representation of the measured shape. The standard deviation of the measured shape relative the CAD model varies between 7 and 19 μm, depending on the slope.

  • 2.
    Khodadad, Davood
    Örebro University, School of Science and Technology. Experimental Mechanics, Luleå University of Technology, Luleå, Sweden .
    Phase-derivative-based estimation of a digital reference wave from a single off-axis digital hologram2016In: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 55, no 7, p. 1663-1669Article in journal (Refereed)
    Abstract [en]

    This paper describes a method to obtain an estimated digital reference wave from a single off-axis digital hologram that matches the actual experimental reference wave as closely as possible. The proposed method is independent of a reference flat plate and speckles. The digital reference wave parameters are estimated directly from the recorded phase information. The parameters include both the off-axis tilt angle and the curvature of the reference wave. Phase derivatives are used to extract the digital reference wave parameters without the need for a phase unwrapping process. Thus, problems associated with phase wrapping are avoided. Experimental results for the proposed method are provided. The simulated effect of the digital reference wave parameters on the reconstructed image phase distribution is shown. The pseudo phase gradient originating from incorrect estimation of the digital reference wave parameters and its effect on object reconstruction are discussed.

  • 3.
    Khodadad, Davood
    et al.
    Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden.
    Bergström, Per
    Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden.
    Hällstig, Emil
    Optronic Partner dp AB, Skellefteå, Sweden.
    Sjödahl, Mikael
    Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden.
    Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements2015In: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 54, no 16, p. 5003-5010Article in journal (Refereed)
    Abstract [en]

    The objective of this paper is to describe a fast and robust automatic single-shot dual-wavelength holographic calibration method that can be used for online shape measurement applications. We present a model of the correction in two terms for each lobe, one to compensate the systematic errors caused by off-axis angles and the other for the curvature of the reference waves, respectively. Each hologram is calibrated independently without a need for an iterative procedure or information of the experimental set-up. The calibration parameters are extracted directly from speckle displacements between different reconstruction planes. The parameters can be defined as any fraction of a pixel to avoid the effect of quantization. Using the speckle displacements, problems associated with phase wrapping is avoided. The procedure is shown to give a shape accuracy of 34 μm using a synthetic wavelength of 1.1 mm for a measurement on a cylindrical test object with a trace over a field of view of 18  mm×18  mm.

  • 4.
    Khodadad, Davood
    et al.
    Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden; Institute of Applied Optics, University of Stuttgart, Stuttgart, Germany; Department of Physics and Electrical Engineering, Linnaeus University, Växjö, Sweden .
    Singh, Alok Kumar
    Institute of Applied Optics, University of Stuttgart, Stuttgart. Germany .
    Pedrini, Giancarlo
    Institute of Applied Optics, University of Stuttgart, Stuttgart. Germany .
    Sjödahl, Mikael
    Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå Sweden.
    Full-field 3D deformation measurement: comparison between speckle phase and displacement evaluation2016In: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 55, no 27, p. 7735-7743Article in journal (Refereed)
    Abstract [en]

    The objective of this paper is to describe a full-field deformation measurement method based on 3D speckle displacements. The deformation is evaluated from the slope of the speckle displacement function that connects the different reconstruction planes. For our experiment, a symmetrical arrangement with four illuminations parallel to the planes (x,z) and (y,z) was used. Four sets of speckle patterns were sequentially recorded by illuminating an object from the four directions, respectively. A single camera is used to record the holograms before and after deformations. Digital speckle photography is then used to calculate relative speckle displacements in each direction between two numerically propagated planes. The 3D speckle displacements vector is calculated as a combination of the speckle displacements from the holograms recorded in each illumination direction. Using the speckle displacements, problems associated with rigid body movements and phase wrapping are avoided. In our experiment, the procedure is shown to give the theoretical accuracy of 0.17 pixels yielding the accuracy of 2 x 10(-3) in the measurement of deformation gradients.

  • 5.
    Tjörnhammar, Staffan
    et al.
    Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden .
    Eklöf, Finn Klemming
    Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden .
    Yu, Zhangwei
    Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden .
    Khodadad, Davood
    Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden .
    Hällstig, Emil
    Fotonic, Stockholm, Sweden .
    Sjödahl, Mikael
    Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden .
    Laurell, Fredrik
    Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden .
    Multiwavelength laser designed for single-frame digital holography2016In: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 55, no 27, p. 7517-7521Article in journal (Refereed)
    Abstract [en]

    In this paper, we present a tailored multiwavelength Yb-fiber laser source in the 1.03 μm spectral region for spatially multiplexed digital holographic acquisitions. The wavelengths with bandwidths below 0.1 nm were spectrally separated by approximately 1 nm by employing fiber Bragg gratings for spectral control. As a proof of concept, the shape of a cylindrically shaped object with a diameter of 48 mm was measured. The holographic acquisition was performed in single-shot dual-wavelength mode with a synthetic wavelength of 1.1 mm, and the accuracy was estimated to be 3% of the synthetic wavelength.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf