oru.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Rai, Neha
    et al.
    Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland.
    Neugart, Susanne
    Research Area of Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops e. V., Grossbeeren, Germany.
    Yan, Yan
    Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland.
    Wang, Fang
    Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland.
    Siipola, Sari M.
    Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland.
    Lindfors, Anders V.
    Finnish Meteorological Institute, Helsinki, Finland.
    Winkler, Jana Barbro
    Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany.
    Albert, Andreas
    Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany.
    Brosché, Mikael
    Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland.
    Lehto, Tarja
    School of Forest Sciences, University of Eastern Finland, Joensuu, Finland.
    Morales, Luis Orlando
    Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland.
    Aphalo, Pedro J.
    Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland.
    How do cryptochromes and UVR8 interact in natural and simulated sunlight?2019In: Journal of Experimental Botany, ISSN 0022-0957, E-ISSN 1460-2431, Vol. 70, no 18, p. 4975-4990Article in journal (Refereed)
    Abstract [en]

    Cryptochromes (CRYs) and UV RESISTANCE LOCUS 8 (UVR8) photoreceptors perceive UV-A/blue (315–500 nm) and UV-B (280–315 nm) radiation in plants, respectively. While the roles of CRYs and UVR8 have been studied in separate controlled environment experiments, little is known about the interaction between these photoreceptors. Here, Arabidopsis thaliana wild-type Ler, CRYs and UVR8 photoreceptor mutants (uvr82, cry1cry2 and cry1cry2uvr82), and a flavonoid biosynthesis defective mutant (tt4) were grown in a sun simulator. Plants were exposed to filtered radiation for 17 d or for 6 h, to study the effects of blue, UV-A and UV-B radiation. Both CRYs and UVR8 independently enabled growth and survival of plants under solar levels of UV, while their joint absence was lethal under UV-B. CRYs mediated gene expression under blue light. UVR8 mediated gene expression under UV-B radiation, and in the absence of CRYs, also under UV-A. This negative regulation of UVR8-mediated gene expression by CRYs was also observed for UV-B. The accumulation of flavonoids was also consistent with this interaction between CRYs and UVR8. In conclusion, we provide evidence for an antagonistic interaction between CRYs and UVR8 and a role of UVR8 in UV-A perception.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf