In this article, we address the problem of realizing a complete efficient system for automated management of fleets of autonomous ground vehicles in industrial sites. We elicit from current industrial practice and the scientific state of the art the key challenges related to autonomous transport vehicles in industrial environments and relate them to enabling techniques in perception, task allocation, motion planning, coordination, collision prediction, and control. We propose a modular approach based on least commitment, which integrates all modules through a uniform constraint-based paradigm. We describe an instantiation of this system and present a summary of the results, showing evidence of increased flexibility at the control level to adapt to contingencies.
When creating datasets for modelling of human skills based on training examples from human motion, one can encounter the problem that the kinematics of the robot does not match the human kinematics. Presented is a simple method of bypassing the explicit modelling of the human kinematics based on a variant of the self-organising map (SOM) algorithm. While the literature contains instances of SOM-type algorithms used for dimension reduction, this reported work deals with the inverse problem: dimension increase, as we are going from 4 to 5 degrees of freedom.
We consider the problem of objects exploration for grasping purposes, specifically in cases where vision based methods are not applicable. A novel dual-hand object exploration method is proposed that takes benefits from a human demonstration to enrich knowledge about an object. The user handles an object freely using both hands, without restricting the object pose. A set of grasp-related features obtained during exploration is demonstrated and utilized to generate grasp oriented bounding boxes that are basis for pre-grasp hypothesis. We believe that such exploration done in a natural and user friendly way creates important link between an operator intention and a robot action.
The synthesis of multi-fingered grasps on nontrivial objects requires a realistic representation of the contact between the fingers of a robotic hand and an object. In this work, we use a patch contact model to approximate the contact between a rigid object and a deformable anthropomorphic finger. This contact model is utilized in the computation of Independent Contact Regions (ICRs) that have been proposed as a way to compensate for shortcomings in the finger positioning accuracy of robotic grasping devices. We extend the ICR algorithm to account for the patch contact model and show the benefits of this solution.
The synthesis and evaluation of multi-fingered grasps on complex objects is a challenging problem that has received much attention in the robotics community. Although several promising approaches have been developed, applications to real-world systems are limited to simple objects or gripper configurations. The paradigm of Independent Contact Regions (ICRs) has been proposed as a way to increase the tolerance to grasp positioning errors. This concept is well established, though only on precise geometric object models. This work is concerned with the application of the ICR paradigm to models reconstructed from real-world range data. We propose a method for increasing the robustness of grasp synthesis on uncertain geometric models. The sensitivity of the ICR algorithm to noisy data is evaluated and a filtering approach is proposed to improve the quality of the final result.
This article addresses the fast solution of a Quadratic Program underlying a Linear Model Predictive Control scheme that generates walking motions. We introduce an algorithm which is tailored to the particular requirements of this problem, and therefore able to solve it efficiently. Different aspects of the algorithm are examined, its computational complexity is presented, and a numerical comparison with an existing state of the art solver is made. The approach presented here, extends to other general problems in a straightforward way. © 2009 IEEE.
The article presents an improved formulation of an existing model predictive control scheme used to generate online "stable" walking motions for a humanoid robot. We introduce: (i) a change of variable that simplifies the optimiza tion problem to be solved; (ii) a simply bounded formulation in the case when the positions of the feet are predetermined; (iii) a formulation allowing foot repositioning (when the system is perturbed) based on ℓ1- and ℓ∞-norm minimization; (iv) a formulation that accounts for (approximate) double support constraints when foot repositioning occurs.
This article presents a comparison between dense and sparse model predictive control (MPC) formulations, in the context of walking motion generation for humanoid robots. The former formulation leads to smaller, the latter one to larger but more structured optimization problem. We put an accent on the sparse formulation and point out a number of advantages that it presents. In particular, motion generation with variable center of mass (CoM) height, as well as variable discretization of the preview window, come at a negligible additional computational cost. We present a sparse formulation that comprises a diagonal Hessian matrix and has only simple bounds (while still retaining the possibility to generate motions for an omnidirectional walk). Finally, we present the results from a customized code used to solve the underlying quadratic program (QP).
The goal of this paper is to demonstrate the capacity of model predictive control (MPC) to generate stable walking motions without the use of predefined footsteps. Building up on well-known MPC schemes for walking motion generation, we show that a minimal modification of these schemes allows designing an online walking motion generator that can track a given reference speed of the robot and decide automatically the footstep placement. Simulation results are proposed on the HRP-2 humanoid robot, showing a significant improvement over previous approaches.
Since the introduction of independent contact regions in order to compensate for shortcomings in the positioning accuracy of robotic hands, alternative methods for their generation have been proposed. Due to the fact that (in general) such regions are not unique, the computation methods used usually reflect the envisioned application and/or underlying assumptions made. This paper introduces a parallelizable algorithm for the efficient computation of independent contact regions, under the assumption that a user input in the form of initial guess for the grasping points is readily available. The proposed approach works on discretized 3D-objects with any number of contacts and can be used with any of the following models: frictionless point contact, point contact with friction and soft finger contact. An example of the computation of independent contact regions comprising a non-trivial task wrench space is given.
The concept of independent contact regions on a target object's surface, in order to compensate for shortcomings in the positioning accuracy of robotic grasping devices, is well known. However, the numbers and distributions of contact points forming such regions is not unique and depends on the underlying computational method. In this work we present a computation scheme allowing to prioritize contact points for inclusion in the independent regions. This enables a user to affect their shape in order to meet the demands of the targeted application. The introduced method utilizes frictionless contact constraints and is able to efficiently approximate the space of disturbances resistible by all grasps comprising contacts within the independent regions.
We propose a constraint-based approach to address a class of problems encountered in combined task and motion planning (CTAMP), which we call kinematically constrained problems. CTAMP is a hybrid planning process in which task planning and geometric reasoning are interleaved. During this process, symbolic action sequences generated by a task planner are geometrically evaluated. This geometric evaluation is a search problem per se, which we refer to as geometric backtrack search. In kinematically constrained problems, a significant computational effort is spent on geometric backtrack search, which impairs search at the task level. At the basis of our approach to address this problem, is the introduction of an intermediate layer between task planning and geometric reasoning. A set of constraints is automatically generated from the symbolic action sequences to evaluate, and combined with a set of constraints derived from the kinematic model of the robot. The resulting constraint network is then used to prune the search space during geometric backtrack search. We present experimental evidence that our approach significantly reduces the complexity of geometric backtrack search on various types of problem.
The combination of task and motion planning presents us with a new problem that we call geometric backtracking. This problem arises from the fact that a single symbolic state or action can be geometrically instantiated in infinitely many ways. When a symbolic action cannot begeometrically validated, we may need to backtrack in thespace of geometric configurations, which greatly increases thecomplexity of the whole planning process. In this paper, weaddress this problem using intervals to represent geometricconfigurations, and constraint propagation techniques to shrinkthese intervals according to the geometric constraints of the problem. After propagation, either (i) the intervals are shrunk, thus reducing the search space in which geometric backtracking may occur, or (ii) the constraints are inconsistent, indicating then infeasibility of the sequence of actions without further effort. We illustrate our approach on scenarios in which a two-arm robot manipulates a set of objects, and report experiments that show how the search space is reduced.
Coordinating multiple autonomous ground vehicles is paramount to many industrial applications. Vehicle trajectories must take into account temporal and spatial requirements, e : g :; usage of floor space and deadlines on task execution. In this paper we present an approach to obtain sets of alternative execution patterns (called trajectory envelopes) which satisfy these requirements and are conflict-free. The approach consists of multiple constraint solvers which progressively refine trajectory envelopes according to mission requirements. The approach leverages the notion of least commitment to obtain easily revisable trajectories for execution.