To Örebro University

oru.seÖrebro University Publications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Angelstam, Per
    et al.
    Örebro University, Department of Natural Sciences.
    Mikusinski, Grzegorz
    Örebro University, Department of Natural Sciences. Swed. Univ. of Agricultural Sciences, Sweden.
    Rönnbäck, Britt-Inger
    Div. of Geogr. Info. Technology, Luleå University of Technology, Sweden; Luleå University of Technology, Sweden; Swedish Space Corporation, Swedish Land Survey, Sweden; Dept. of Environmental Engineering, Geographical Information Technology, Luleå University of Technology, Luleå, Sweden .
    Östman, Anders
    Luleå University of Technology, Sweden; Dept. of Environmental Engineering, Geographical Information Technology, Luleå University of Technology, Luleå, Sweden; Intergraph, Sweden .
    Lazdinis, Marius
    Lithuanian Agricultural University, Lithuania; Southern Illinois University, United States; Lithuanian Ministry of Environment, Lithuania; Department of Conservation Biology, Swedish University of Agriculture, Sweden; Swed. Univ. of Agricultural Sciences, Umeå, Sweden.
    Roberge, Jean-Michel
    Swed. Univ. of Agricultural Sciences, Umeå, Sweden; Université Laval, Canada; Department of Conservation Biology, Swed. Univ. of Agricultural Sciences, Sweden .
    Arnberg, Wolter
    Stockholm University, Department of Physical Geography, Stockholm, Sweden .
    Olsson, Jan
    Örebro University, School of Humanities, Education and Social Sciences.
    Two-dimensional gap analysis: a tool for efficient conservation planning and biodiversity policy implementation2003In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 32, no 8, p. 527-534Article in journal (Refereed)
    Abstract [en]

    The maintenance of biodiversity by securing representative and well-connected habitat networks in managed landscapes requires a wise combination of protection, management, and restoration of habitats at several scales. We suggest that the integration of natural and social sciences in the form of "Two-dimensional gap analysis" is an efficient tool for the implementation of biodiversity policies. The tool links biologically relevant "horizontal" ecological issues with "vertical" issues related to institutions and other societal issues. Using forest biodiversity as an example, we illustrate how one can combine ecological and institutional aspects of biodiversity conservation, thus facilitating environmentally sustainable regional development. In particular, we use regional gap analysis for identification of focal forest types, habitat modelling for ascertaining the functional connectivity of "green infrastructures", as tools for the horizontal gap analysis. For the vertical dimension we suggest how the social sciences can be used for assessing the success in the implementation of biodiversity policies in real landscapes by identifying institutional obstacles while implementing policies. We argue that this interdisciplinary approach could be applied in a whole range of other environments including other terrestrial biota and aquatic ecosystems where functional habitat connectivity, nonlinear response to habitat loss and a multitude of economic and social interests co-occur in the same landscape.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf