To Örebro University

oru.seÖrebro University Publications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Iliev, Boyko
    et al.
    Örebro University, Department of Technology.
    Lindquist, Malin
    Örebro University, Department of Technology.
    Robertsson, Linn
    Örebro University, Department of Technology.
    Wide, Peter
    Örebro University, Department of Technology.
    A fuzzy technique for food- and water quality assessment with an electronic tongue2006In: Fuzzy sets and systems (Print), ISSN 0165-0114, E-ISSN 1872-6801, Vol. 157, no 9, p. 1155-1168Article in journal (Refereed)
    Abstract [en]

    The problem of food- and water quality assessment is important for many practical applications, such as food industry and environmental monitoring. In this article we present a method for fast online quality assessment based on electronic tongue measurements. The idea is implemented in two steps. First we apply a fuzzy clustering technique to obtain prototypes corresponding to good and bad quality from a set of training data. During the second, online step we evaluate the membership of the current measurement to each cluster and make a decision about its quality. The result is presented to the user in a simple and understandable way, similar to the concept of traffic light signals. Namely, good quality is indicated with by a green light, bad quality with a red one, and a yellow light is a warning signal. The approach is demonstrated in two case studies: quality assessment of drinking water and baby food.

  • 2.
    Robertsson, Linn
    Örebro University, Department of Technology.
    Perception modeling and feature extraction for an electronic tongue2007Licentiate thesis, monograph (Other academic)
  • 3.
    Robertsson, Linn
    et al.
    Örebro University, Department of Technology.
    Iliev, Boyko
    Örebro University, Department of Technology.
    Palm, Rainer
    Örebro University, Department of Technology.
    Wide, Peter
    Örebro University, Department of Technology.
    Perception modeling for human-like artificial sensor systems2007In: International journal of human-computer studies, ISSN 1071-5819, E-ISSN 1095-9300, Vol. 65, no 5, p. 446-459Article in journal (Refereed)
    Abstract [en]

    In this article we present an approach to the design of human-like artificial systems. It uses a perception model to describe how sensory information is processed for a particular task and to correlate human and artificial perception. Since human-like sensors share their principle of operation with natural systems, their response can be interpreted in an intuitive way. Therefore, such sensors allow for easier and more natural human–machine interaction.

    The approach is demonstrated in two applications. The first is an “electronic tongue”, which performs quality assessment of food and water. In the second application we describe the development of an artificial hand for dexterous manipulation. We show that human-like functionality can be achieved even if the structure of the system is not completely biologically inspired.

  • 4.
    Robertsson, Linn
    et al.
    Örebro University, Department of Technology.
    Lindquist, Malin
    Örebro University, Department of Technology.
    Loutfi, Amy
    Örebro University, Department of Technology.
    Iliev, Boyko
    Örebro University, Department of Technology.
    Wide, Peter
    Örebro University, Department of Technology.
    Human based sensor systems for safety assessment2005In: Proceedings of the 2005 IEEE International conference on computational intelligence for homeland security and personal safety, 2005. CIHSPS 2005, 2005, p. 137-142Conference paper (Refereed)
    Abstract [en]

    This paper focuses on the assumption that sensor system for personal use has optimal performance if coherent with the human perception system. Therefore, we provide arguments for this idea by demonstrating two examples. The first example is a personal taste sensor for use in finding abnormal ingredients in food. The second application is a mobile sniffing system, coherent with the behavior of a biological system when detecting unwanted material in hidden structures, e.g. explosives in a traveling bag

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf