oru.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alfaro-Moreno, Ernesto
    et al.
    Örebro University, School of Science and Technology.
    Quintana-Belmares, R.
    Instituto Nacional de Cancerologia, Investigacion Basica, Mexico City, Mexico.
    Montiel-Davalos, A.
    Instituto Nacional de Cancerologia, Investigacion Basica, Mexico City, Mexico.
    Gustafsson, A.
    Örebro University, Man-Technology-Environment Research Center, Örebro, Sweden.
    Miranda, J.
    Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico City, Mexico.
    Lopez-Marure, R.
    Instituto Nacional de Cardiologia, Investigacion, Mexico City, Mexico.
    Rosas-Perez, I.
    Universidad Nacional Autonoma de Mexico, Centro de Ciencias de la Atmosfera, Mexico City, Mexico.
    Expression of receptors for adhesion molecules in monocytes exposed to urban particulate matter is independent of size and composition of the particles2019In: Toxicology Letters, ISSN 0378-4274, E-ISSN 1879-3169, Vol. 314, no Suppl., p. S232-S233Article in journal (Other academic)
  • 2.
    Huerta-García, Elizabeth
    et al.
    División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma Tabasco, Comalcalco, Tabasco, México.
    Ramos-Godinez, María Del Pilar
    Departamento de Microscopía Electrónica, Ciudad de México, México .
    López-Saavedra, Alejandro
    Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Ciudad de México, México.
    Alfaro-Moreno, Ernesto
    Örebro University, School of Science and Technology. of Environmental Health, Karolinska Institute, Stockholm, Sweden.
    Gómez-Crisóstomo, Nancy Patricia
    División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma Tabasco, Comalcalco, Tabasco, México.
    Colín-Val, Zaira
    Departamento de Fisiología, Instituto Nacional de Cardiología “Ignacio Chávez”, Ciudad de México, México.
    Sánchez-Barrera, Helen
    Departamento de Fisiología, Instituto Nacional de Cardiología “Ignacio Chávez”, Ciudad de México, México.
    López-Marure, Rebeca
    Departamento de Fisiología, Instituto Nacional de Cardiología “Ignacio Chávez”, Ciudad de México, México.
    Internalization of Titanium Dioxide Nanoparticles Is Mediated by Actin-Dependent Reorganization and Clathrin- and Dynamin-Mediated Endocytosis in H9c2 Rat Cardiomyoblasts2019In: Chemical Research in Toxicology, ISSN 0893-228X, E-ISSN 1520-5010, Vol. 32, no 4, p. 578-588Article in journal (Refereed)
    Abstract [en]

    Titanium dioxide nanoparticles (TiO2 NPs) are widely used for industrial and commercial applications. Once inside the body, they translocate into the bloodstream and reach different areas of the cardiovascular system including the heart, increasing the risk of developing cardiovascular diseases; consequently, the investigation of their interaction with cardiac cells is required. We previously showed that TiO2 NPs are internalized by H9c2 rat cardiomyoblasts, and here, we examined the molecular mechanisms underlying this process. TiO2 NPs internalization was evaluated by transmission electron microscopy, time-lapse microscopy, and flow cytometry. Changes in the actin cytoskeleton were studied by phalloidin staining. Endocytic uptake mechanisms for nanoparticles were probed with chemical inhibitors, whereas clathrin and dynamin expression was measured by Western blot. Cellular uptake of TiO2 NPs occurred early after 30 min exposure, and large aggregates were observed after 1 h. Actin cytoskeleton reorganization included cell elongation plus lower density and stability of actin fibers. Cytochalasin-D inhibited TiO2 NPs uptake, indicating actin-mediated internalization. Dynamin and clathrin levels increased early after TiO2 NPs exposure, and their inhibition reduced nanoparticle uptake. Therefore, TiO2 NPs internalization by H9c2 rat cardiomyoblasts involves actin cytoskeleton reorganization and clathrin/dynamin-mediated endocytosis.

  • 3.
    Åkerlund, Emma
    et al.
    Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
    Islam, Md Shafiqul
    Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
    McCarrick, Sarah
    Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
    Alfaro-Moreno, Ernesto
    Örebro University, School of Science and Technology. Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
    Karlsson, Hanna L.
    Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
    Inflammation and (secondary) genotoxicity of Ni and NiO nanoparticles2019In: Nanotoxicology, ISSN 1743-5390, E-ISSN 1743-5404, Vol. 13, no 8, p. 1060-1072Article in journal (Refereed)
    Abstract [en]

    Nanoparticle-induced genotoxicity can arise through different mechanisms, and generally, primary and secondary genotoxicity can be distinguished where the secondary is driven by an inflammatory response. It is, however, yet unclear how a secondary genotoxicity can be detected using in vitro methods. The aim of this study was to investigate inflammation and genotoxicity caused by agglomerated nickel (Ni) and nickel oxide (NiO) nanoparticles and, furthermore, to explore the possibility to test secondary (inflammation-driven) genotoxicity in vitro. As a benchmark particle to compare with, we used crystalline silica (quartz). A proteome profiler antibody array was used to screen for changes in release of 105 different cytokines and the results showed an increased secretion of various cytokines including vascular endothelial growth factor (VEGF) following exposure of macrophages (differentiated THP-1 cells). Both Ni and NiO caused DNA damage (comet assay) following exposure of human bronchial epithelial cells (HBEC) and interestingly conditioned media (CM) from exposed macrophages also resulted in DNA damage (2- and 3-fold increase for Ni and NiO, respectively). Similar results were also found when using a co-culture system of macrophages and epithelial cells. In conclusion, this study shows that it is possible to detect a secondary genotoxicity in lung epithelial cells by using in vitro methods based on conditioned media or co-cultures. Further investigation is needed in order to find out what factors that are causing this secondary genotoxicity and whether such effects are caused by numerous nanoparticles.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf