oru.sePublikationer
Change search
Refine search result
1 - 38 of 38
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Arain, Muhammad Asif
    et al.
    Örebro University, School of Science and Technology.
    Cirillo, Marcello
    Örebro University, School of Science and Technology. Scania AB, Granparksvagen 10, SE-15187 Södertälje, Sweden.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Trincavelli, Marco
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Efficient Measurement Planning for Remote Gas Sensing with Mobile Robots2015In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Washington, USA: IEEE Computer Society, 2015, 3428-3434 p.Conference paper (Refereed)
    Abstract [en]

    The problem of gas detection is relevant to manyreal-world applications, such as leak detection in industrialsettings and surveillance. In this paper we address the problemof gas detection in large areas with a mobile robotic platformequipped with a remote gas sensor. We propose a novelmethod based on convex relaxation for quickly finding anexploration plan that guarantees a complete coverage of theenvironment. Our method proves to be highly efficient in termsof computational requirements and to provide nearly-optimalsolutions. We validate our approach both in simulation andin real environments, thus demonstrating its applicability toreal-world problems.

  • 2.
    Arain, Muhammad Asif
    et al.
    Örebro University, School of Science and Technology.
    Fan, Han
    Örebro University, School of Science and Technology.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Improving Gas Tomography With Mobile Robots: An Evaluation of Sensing Geometries in Complex Environments2017In: 2017 ISOCS/IEEE International Symposium on Olfaction andElectronic Nose (ISOEN 2017) Proceedings, 2017, 7968895Conference paper (Refereed)
    Abstract [en]

    An accurate model of gas emissions is of high importance in several real-world applications related to monitoring and surveillance. Gas tomography is a non-intrusive optical method to estimate the spatial distribution of gas concentrations using remote sensors. The choice of sensing geometry, which is the arrangement of sensing positions to perform gas tomography, directly affects the reconstruction quality of the obtained gas distribution maps. In this paper, we present an investigation of criteria that allow to determine suitable sensing geometries for gas tomography. We consider an actuated remote gas sensor installed on a mobile robot, and evaluated a large number of sensing configurations. Experiments in complex settings were conducted using a state-of-the-art CFD-based filament gas dispersal simulator. Our quantitative comparison yields preferred sensing geometries for sensor planning, which allows to better reconstruct gas distributions.

  • 3.
    Arain, Muhammad Asif
    et al.
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    The Right Direction to Smell: Efficient Sensor Planning Strategies for Robot Assisted Gas Tomography2016In: 2016 IEEE International Conference on Robotics and Automation (ICRA), New York, USA: IEEE Robotics and Automation Society, 2016, 4275-4281 p.Conference paper (Refereed)
    Abstract [en]

    Creating an accurate model of gas emissions is an important task in monitoring and surveillance applications. A promising solution for a range of real-world applications are gas-sensitive mobile robots with spectroscopy-based remote sensors that are used to create a tomographic reconstruction of the gas distribution. The quality of these reconstructions depends crucially on the chosen sensing geometry. In this paper we address the problem of sensor planning by investigating sensing geometries that minimize reconstruction errors, and then formulate an optimization algorithm that chooses sensing configurations accordingly. The algorithm decouples sensor planning for single high concentration regions (hotspots) and subsequently fuses the individual solutions to a global solution consisting of sensing poses and the shortest path between them. The proposed algorithm compares favorably to a template matching technique in a simple simulation and in a real-world experiment. In the latter, we also compare the proposed sensor planning strategy to the sensing strategy of a human expert and find indications that the quality of the reconstructed map is higher with the proposed algorithm.

  • 4.
    Asadi, Sahar
    et al.
    Örebro University, School of Science and Technology.
    Fan, Han
    Örebro University, School of Science and Technology.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Lilienthal, Achim
    Örebro University, School of Science and Technology.
    Time-dependent gas distribution modelling2017In: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 96, 157-170 p.Article in journal (Refereed)
    Abstract [en]

    Artificial olfaction can help to address pressing environmental problems due to unwanted gas emissions. Sensor networks and mobile robots equipped with gas sensors can be used for e.g. air pollution monitoring. Key in this context is the ability to derive truthful models of gas distribution from a set of sparse measurements. Most statistical gas distribution modelling methods assume that gas dispersion is a time constant random process. While this assumption approximately holds in some situations, it is necessary to model variations over time in order to enable applications of gas distribution modelling in a wider range of realistic scenarios. Time-invariant approaches cannot model well evolving gas plumes, for example, or major changes in gas dispersion due to a sudden change of the environmental conditions. This paper presents two approaches to gas distribution modelling, which introduce a time-dependency and a relation to a time-scale in generating the gas distribution model either by sub-sampling or by introducing a recency weight that relates measurement and prediction time. We evaluated these approaches in experiments performed in two real environments as well as on several simulated experiments. As expected, the comparison of different sub-sampling strategies revealed that more recent measurements are more informative to derive an estimate of the current gas distribution as long as a sufficient spatial coverage is given. Next, we compared a time-dependent gas distribution modelling approach (TD Kernel DM+V), which includes a recency weight, to the state-of-the-art gas distribution modelling approach (Kernel DM+V), which does not consider sampling times. The results indicate a consistent improvement in the prediction of unseen measurements, particularly in dynamic scenarios. Furthermore, this paper discusses the impact of meta-parameters in model selection and compares the performance of time-dependent GDM in different plume conditions. Finally, we investigated how to set the target time for which the model is created. The results indicate that TD Kernel DM+V performs best when the target time is set to the maximum sampling time in the test set.

  • 5.
    Bennetts, Victor Hernandez
    et al.
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Stoyanov, Todor
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Trincavelli, Marco
    Örebro University, School of Science and Technology.
    Robot Assisted Gas Tomography - Localizing Methane Leaks in Outdoor Environments2014In: 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), IEEE conference proceedings, 2014, 6362-6367 p.Conference paper (Refereed)
    Abstract [en]

    In this paper we present an inspection robot to produce gas distribution maps and localize gas sources in large outdoor environments. The robot is equipped with a 3D laser range finder and a remote gas sensor that returns integral concentration measurements. We apply principles of tomography to create a spatial gas distribution model from integral gas concentration measurements. The gas distribution algorithm is framed as a convex optimization problem and it models the mean distribution and the fluctuations of gases. This is important since gas dispersion is not an static phenomenon and furthermore, areas of high fluctuation can be correlated with the location of an emitting source. We use a compact surface representation created from the measurements of the 3D laser range finder with a state of the art mapping algorithm to get a very accurate localization and estimation of the path of the laser beams. In addition, a conic model for the beam of the remote gas sensor is introduced. We observe a substantial improvement in the gas source localization capabilities over previous state-of-the-art in our evaluation carried out in an open field environment.

  • 6.
    Fan, Han
    et al.
    Örebro University, School of Science and Technology.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Unsupervised gas discrimination in uncontrolled environments by exploiting density peaks2016In: 2016 IEEE SENSORS, Institute of Electrical and Electronics Engineers (IEEE), 2016Conference paper (Refereed)
    Abstract [en]

    Gas discrimination with Open Sampling Systems based on low-cost electro-chemical sensor arrays is of great interest in several applications, such as exploration of hazardous areas and environmental monitoring. Due to the lack of labeled training data or the high costs of obtaining them, as well as the presence of unknown interferents in the target environments, supervised learning is often not applicable and thus, unsupervised learning is an interesting alternative. In this work, we present a cluster analysis approach that can infer the number of different chemical compounds and label the measurements in a given uncontrolled environment without relying on previously acquired training data. Our approach is validated with data collected in indoor and outdoor environments by a mobile robot equipped with an array of metal oxide sensors. The results show that high classification accuracy can be achieved with a rather low sensitivity to the selection of the only functional parameter of our proposed algorithm. 

  • 7.
    Hernandez Bennetts, Victor
    et al.
    Örebro University, School of Science and Technology.
    Kucner, Tomasz Piotr
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Neumann, Patrick P.
    Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany.
    Fan, Han
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Probabilistic Air Flow Modelling Using Turbulent and Laminar Characteristics for Ground and Aerial Robots2017In: IEEE Robotics and Automation Letters, ISSN 2377-3766, E-ISSN 1949-3045, Vol. 2, no 2, 1117-1123 p.Article in journal (Refereed)
    Abstract [en]

    For mobile robots that operate in complex, uncontrolled environments, estimating air flow models can be of great importance. Aerial robots use air flow models to plan optimal navigation paths and to avoid turbulence-ridden areas. Search and rescue platforms use air flow models to infer the location of gas leaks. Environmental monitoring robots enrich pollution distribution maps by integrating the information conveyed by an air flow model. In this paper, we present an air flow modelling<?brk?> algorithm that uses wind data collected at a sparse number of locations to estimate joint probability distributions over wind speed and direction at given query locations. The algorithm uses a novel extrapolation approach that models the air flow as a linear combination of laminar and turbulent components. We evaluated the prediction capabilities of our algorithm with data collected with an aerial robot during several exploration runs. The results show that our algorithm has a high degree of stability with respect to parameter selection while outperforming conventional extrapolation approaches. In addition, we applied our proposed approach in an industrial application, where the characterization of a ventilation system is supported by a ground mobile robot. We compared multiple air flow maps recorded over several months by estimating stability maps using the Kullback&ndash;Leibler divergence between the distributions. The results show that, despite local differences, similar air flow patterns prevail over time. Moreover, we corroborated the validity of our results with knowledge from human experts.

  • 8.
    Hernandez Bennetts, Victor
    et al.
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Neumann, Patrick P.
    BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
    Trincavelli, Marco
    Örebro University, School of Science and Technology.
    Mobile robots for localizing gas emission sources on landfill sites: is bio-inspiration the way to go?2012In: Frontiers in Neuroengineering, ISSN 1662-6443, Vol. 4, no 20, 1-12 p.Article in journal (Refereed)
    Abstract [en]

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully translated into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms.

  • 9.
    Hernandez Bennetts, Victor
    et al.
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Ferrari, Silvia
    Sibley School of Mechanical and Aerospace Engineering, Cornell University, NY, USA.
    Albertson, John
    School of Civil and Environmental Engineering, Cornell University, NY, USA.
    Integrated Simulation of Gas Dispersion and Mobile Sensing Systems2015In: Workshop on Realistic, Rapid and Repeatable Robot Simulation, 2015Conference paper (Refereed)
    Abstract [en]

    Accidental or intentional releases of contaminants into the atmosphere pose risks to human health, the environment, the economy, and national security. In some cases there may be a single release from an unknown source, while in other cases there are fugitive emissions from multiple sources. The need to locate and characterize the sources efficiently - whether it be the urgent need to evacuate or the systematic need to cover broad geographical regions with limited resources - is shared among all cases. Efforts have begun to identify leaks with gas analyzers mounted on Mobile Robot Olfaction (MRO) systems, road vehicles, and networks of fixed sensors, such as may be based in urban environments. To test and compare approaches for gas-sensitive robots a truthful gas dispersion simulator is needed. In this paper, we present a unified framework to simulate gas dispersion and to evaluate mobile robotics and gas sensing technologies using ROS. This framework is also key to developing and testing optimization and planning algorithms for determining sensor placement and sensor motion, as well as for fusing and connecting the sensor measurements to the leak locations.

  • 10.
    Hernandez Bennetts, Victor
    et al.
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Trincavelli, Marco
    Örebro University, School of Science and Technology.
    Creating true gas concentration maps in presence of multiple heterogeneous gas sources2012In: Sensors, 2012 IEEE, Institute of Electrical and Electronics Engineers (IEEE), 2012, 554-557 p.Conference paper (Refereed)
    Abstract [en]

    Gas distribution mapping is a crucial task in emission monitoring and search and rescue applications. A common assumption made by state-of-the art mapping algorithms is that only one type of gaseous substance is present in the environment. For real world applications, this assumption can become very restrictive. In this paper we present an algorithm that creates gas concentration maps in a scenario where multiple heterogeneous gas sources are present. First, using an array of metal oxide (MOX) sensors and a pattern recognition algorithm, the chemical compound is identified. Then, for each chemical compound a gas concentration map using the readings of a Photo Ionization Detector (PID) is created. The proposed approach has been validated in experiments with the sensors mounted on a mobile robot which performed a predefined trajectory in a room where two gas sources emitting respectively ethanol and 2-propanol have been placed.

  • 11.
    Hernandez Bennetts, Victor Manuel
    et al.
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology. Univ Örebro, AASS Res Ctr, Örebro, Sweden.
    Khaliq, Ali Abdul
    Örebro University, School of Science and Technology. Univ Örebro, AASS Res Ctr, Örebro, Sweden.
    Pomareda Sese, Victor
    Institute of Bioengineering of Catalonia, Spain.
    Trincavelli, Marco
    Örebro University, School of Science and Technology. Univ Örebro, AASS Res Ctr, Örebro, Sweden.
    Towards Real-World Gas Distribution Mapping and Leak Localization Using a Mobile Robot with 3D and Remote Gas Sensing Capabilities2013In: 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), IEEE conference proceedings, 2013, 2335-2340 p.Conference paper (Refereed)
    Abstract [en]

    Due to its environmental, economical and safety implications, methane leak detection is a crucial task to address in the biogas production industry. In this paper, we introduce Gasbot, a robotic platform that aims to automatize methane emission monitoring in landfills and biogas production sites. The distinctive characteristic of the Gasbot platform is the use of a Tunable Laser Absorption Spectroscopy (TDLAS) sensor. This sensor provides integral concentration measurements over the path of the laser beam. Existing gas distribution mapping algorithms can only handle local measurements obtained from traditional in-situ chemical sensors. In this paper we also describe an algorithm to generate 3D methane concentration maps from integral concentration and depth measurements. The Gasbot platform has been tested in two different scenarios: an underground corridor, where a pipeline leak was simulated and in a decommissioned landfill site, where an artificial methane emission source was introduced.

  • 12.
    Hernandez Bennetts, Victor
    et al.
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Fan, Han
    Örebro University, School of Science and Technology.
    Kucner, Tomasz Piotr
    Örebro University, School of Science and Technology.
    Andersson, Lena
    Department of Occupational and Environmental Medicine, Örebro University Hospital, Örebro, Sweden.
    Johansson, Anders
    Department of Occupational and Environmental Medicine, Örebro University Hospital, Örebro, Sweden.
    Towards occupational health improvement in foundries through dense dust and pollution monitoring using a complementary approach with mobile and stationary sensing nodes2016In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Institute of Electrical and Electronics Engineers (IEEE), 2016, 131-136 p., 7759045Conference paper (Refereed)
    Abstract [en]

    In industrial environments, such as metallurgic facilities, human operators are exposed to harsh conditions where ambient air is often polluted with quartz, dust, lead debris and toxic fumes. Constant exposure to respirable particles can cause irreversible health damages and thus it is of high interest for occupational health experts to monitor the air quality on a regular basis. However, current monitoring procedures are carried out sparsely, with data collected in single day campaigns limited to few measurement locations. In this paper we explore the use and present first experimental results of a novel heterogeneous approach that uses a mobile robot and a network of low cost sensing nodes. The proposed system aims to address the spatial and temporal limitations of current monitoring techniques. The mobile robot, along with standard localization and mapping algorithms, allows to produce short term, spatially dense representations of the environment where dust, gas, ambient temperature and airflow information can be modelled. The sensing nodes on the other hand, can collect temporally dense (and usually spatially sparse) information during long periods of time, allowing in this way to register for example, daily variations in the pollution levels. Using data collected with the proposed system in an steel foundry, we show that a heterogeneous approach provides dense spatio-temporal information that can be used to improve the working conditions in industrial facilities.

  • 13.
    Hernandez Bennetts, Victor
    et al.
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Pomadera Sese, Victor
    Institute of Bioengineering of Catalonia, Barcelona, Spain.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Marco, Santiago
    Signal and Information Processing for Sensing Systema, Institute for Bioengineering of Catalonia, Barcelona, Spain; Departament d’Electrònica, Universitat de Barcelona, Barcelona, Spain.
    Trincavelli, Marco
    Örebro University, School of Science and Technology.
    Combining Non Selective Gas Sensors on a Mobile Robot for Identification and Mapping of Multiple Chemical Compounds2014In: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 14, no 9, 17331-17352 p.Article in journal (Refereed)
    Abstract [en]

    In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources.

  • 14.
    Hernandez Bennetts, Victor
    et al.
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Pomadera Sese, Victor
    Institute of Bioengineering of Catalonia, Spain.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Trincavelli, Marco
    Örebro University, School of Science and Technology.
    A Novel Approach for Gas Discrimination in Natural Environments with Open Sampling Systems2014In: Proceedings of the IEEE Sensors Conference 2014, IEEE conference proceedings, 2014, -2049 p.Conference paper (Refereed)
    Abstract [en]

    This work presents a gas discrimination approachfor Open Sampling Systems (OSS), composed of non-specificmetal oxide sensors only. In an OSS, as used on robots or insensor networks, the sensors are exposed to the dynamics of theenvironment and thus, most of the data corresponds to highlydiluted samples while high concentrations are sparse. In addition,a positive correlation between class separability and concentra-tion level can be observed. The proposed approach computes theclass posteriors by coupling the pairwise probabilities betweenthe compounds to a confidence model based on an estimation ofthe concentration. In this way a rejection posterior, analogous tothe detection limit of the human nose, is learned. Evaluation wasconducted in indoor and outdoor sites, with an OSS equippedrobot, in the presence of two gases. The results show that theproposed approach achieves a high classification performancewith a low sensitivity to the selection of meta parameters.

  • 15.
    Hernandez Bennetts, Victor
    et al.
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Stoyanov, Todor
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Trincavelli, Marco
    Örebro University, School of Science and Technology.
    Robot assisted gas tomography: an alternative approach for the detection of fugitive methane emissions2014In: Workshop on Robot Monitoring, 2014Conference paper (Refereed)
    Abstract [en]

    Methane (CH4) based combustibles, such as Natural Gas (NG) and BioGas (BG), are considered bridge fuels towards a decarbonized global energy system. NG emits less CO2 during combustion than other fossil fuels and BG can be produced from organic waste. However, at BG production sites, leaks are common and CH4 can escape through fissures in pipes and insulation layers. While by regulation BG producers shall issue monthly CH4 emission reports, measurements are sparsely collected, only at a few predefined locations. Due to the high global warming potential of CH4, efficient leakage detection systems are critical. We present a robotics approach to localize CH4 leaks. In Robot assisted Gas Tomography (RGT), a mobile robot is equipped with remote gas sensors to create gas distribution maps, which can be used to infer the location of emitting sources. Spectroscopy based remote gas sensors report integral concentrations, which means that the measurements are spatially unresolved, with neither information regarding the gas distribution over the optical path nor the length of the s beam. Thus, RGT fuses different sensing modalities, such as range sensors for robot localization and ray tracing, in order to infer plausible gas distribution models that explain the acquired integral concentration measurements.

  • 16.
    Hernandez Bennetts, Victor
    et al.
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Stoyanov, Todor
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Trincavelli, Marco
    Örebro University, School of Science and Technology.
    Robot assisted gas tomography: localizing methane leaks in outdoor environments2014In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE conference proceedings, 2014Conference paper (Refereed)
    Abstract [en]

    In this paper we present an inspection robot to produce gas distribution maps and localize gas sources in large outdoor environments. The robot is equipped with a 3D laser range finder and a remote gas sensor that returns integral concentration measurements. We apply principles of tomography to create a spatial gas distribution model from integral gas concentration measurements. The gas distribution algorithm is framed as a convex optimization problem and it models the mean distribution and the fluctuations of gases. This is important since gas dispersion is not an static phenomenon and furthermore, areas of high fluctuation can be correlated with the location of an emitting source. We use a compact surface representation created from the measurements of the 3D laser range finder with a state of the art mapping algorithm to get a very accurate localization and estimation of the path of the laser beams. In addition, a conic model for the beam of the remote gas sensor is introduced. We observe a substantial improvement in the gas source localization capabilities over previous state-of-the-art in our evaluation carried out in an open field environment.

  • 17.
    Hernandez Bennetts, Victor
    et al.
    Örebro University, School of Science and Technology.
    Trincavelli, Marco
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Pomadera Sese, Victor
    Institute of Bioengineering of Catalonia, Spain.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Online parameter selection for gas distribution mapping2013In: Proceedings of the ISOEN conference 2013, 2013Conference paper (Refereed)
  • 18.
    Hernandez Bennetts, Victor
    et al.
    Örebro University, School of Science and Technology.
    Trincavelli, Marco
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Online parameter selection for gas distribution mapping2014In: Sensor Letters, ISSN 1546-198X, E-ISSN 1546-1971, Vol. 12, no 6-7, 1147-1151 p.Article in journal (Refereed)
    Abstract [en]

    The ability to produce truthful maps of the distribution of one or more gases is beneficial for applications ranging from environmental monitoring to mines and industrial plants surveillance. Realistic environments are often too complicated for applying analytical gas plume models or performing reliable CFD simulations, making data-driven statistical gas distribution models the most attractive alternative. However, statistical models for gas distribution modelling, often rely on a set of meta-parameters that need to be learned from the data through Cross Validation (CV) techniques. CV techniques are computationally expensive and therefore need to be computed offline. As a faster alternative, we propose a parameter selection method based on Virtual Leave-One-Out Cross Validation (VLOOCV) that enables online learning of meta-parameters. In particular, we consider the Kernel DM+V, one of the most well studied algorithms for statistical gas distribution mapping, which relies on a meta-parameter, the kernel bandwidth. We validate the proposed VLOOCV method on a set of indoor and outdoor experiments where a mobile robot with a Photo Ionization Detector (PID) was collecting gas measurements. The approximation provided by the proposed VLOOCV method achieves very similar results to plain Cross Validation at a fraction of the computational cost. This is an important step in the development of on-line statistical gas distribution modelling algorithms.

  • 19.
    Hernández Bennetts, Victor Manuel
    Örebro University, School of Science and Technology.
    Mobile robots with in-situ and remote sensors for real world gas distribution modelling2015Doctoral thesis, monograph (Other academic)
  • 20.
    Ishida, Hiroshi
    et al.
    Tokyo University of Agriculture and Technology, Tokyo, Japan.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Matsukura, Haruka
    Tokyo University of Agriculture and Technology, Tokyo, Japan.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Using Chemical Sensors as 'Noses' for Mobile Robots2016In: Essentials of Machine Olfaction and Taste / [ed] Takamichi Nakamoto, Singapore: John Wiley & Sons, 2016, 219-246 p.Chapter in book (Refereed)
    Abstract [en]

    Gas sensors detect the presence of gaseous chemical compounds in air. They are often used in the form of gas alarms for detecting dangerous or hazardous gases. However, a limited number of stationary gas alarms may not be always sufficient to cover a large industrial facility. Human workers having a portable gas detector in their hand needs to be sent to thoroughly check gas leaks in the areas not covered by stationary gas alarms. However, making repetitive measurements with a gas detector at a number of different locations is laborious. Moreover, the places where the gas concentration level needs to be checked are often potentially dangerous for human workers. If a portable gas detector is mounted on a mobile robot, the task of patrolling in an industrial facility for checking a gas leak can be automated. Robots are good at doing repetitive tasks, and can be sent into harsh environments.

  • 21.
    Kamarudin, Kamarulzaman
    et al.
    Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Malaysia; School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau, Perlis, Malaysia.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Mamduh, S. H.
    Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Malaysia.
    Visvanathan, R.
    Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Malaysia.
    Yeon, A. S. A.
    Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Malaysia.
    Shakaff, A. Y. M.
    Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Malaysia; School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau, Perlis, Malaysia.
    Zakaria, A.
    Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Malaysia; School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau, Perlis, Malaysia.
    Abdullah, A. H.
    Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Malaysia; School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau, Perlis, Malaysia.
    Kamarudin, L. M.
    Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Malaysia.
    Cross-sensitivity of Metal Oxide Gas Sensor to Ambient Temperature and Humidity: Effects on Gas Distribution Mapping2017In: Proceedings of the 11th Asian Conference on Chemical Sensors, American Institute of Physics (AIP), 2017, Vol. 1808, UNSP 020025-1Conference paper (Refereed)
    Abstract [en]

    Metal oxide gas sensors have been widely used in robotics application to perform remote and mobile gas sensing. However, previous researches have indicated that this type of sensor technology is cross-sensitive to environmental temperature and humidity. This paper therefore investigates the effects of these two factors towards gas distribution mapping and gas source localization domains. A mobile robot equipped with TGS2600 gas sensor was deployed to build gas distribution maps of indoor environment, where the temperature and humidity varies. The results from the trials in environment with and without gas source indicated that there is a strong relation between the fluctuation of the mean and variance map with respect to the variations in the temperature and humidity maps.

  • 22.
    Khaliq, Ali
    et al.
    Örebro University, School of Science and Technology.
    Pashami, Sepideh
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Bringing Artificial Olfaction and Mobile Robotics Closer Together: An Integrated 3D Gas Dispersion Simulator in ROS2015In: Proceedings of the 16th International Symposium on Olfaction and Electronic Noses, 2015Conference paper (Refereed)
    Abstract [en]

    Despite recent achievements, the potential of gas-sensitive mobile robots cannot be realized due to the lack of research on fundamental questions. A key limitation is the difficulty to carry out evaluations against ground truth. To test and compare approaches for gas-sensitive robots a truthful gas dispersion simulator is needed. In this paper we present a unified framework to simulate gas dispersion and to evaluate mobile robotics and gas sensing algorithms using ROS. Gas dispersion is modeled as a set of particles affected by diffusion, turbulence, advection and gravity. Wind information is integrated as time snapshots computed with any fluid dynamics computation tool. In addition, response models for devices such as Metal Oxide (MOX) sensors can be integrated in the framework.

  • 23.
    Kucner, Tomasz
    et al.
    Örebro University, School of Science and Technology.
    Magnusson, Martin
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Lilienthal, Achim
    Örebro University, School of Science and Technology.
    Tell me about dynamics!: Mapping velocity fields from sparse samples with Semi-Wrapped Gaussian Mixture Models2016In: Robotics: Science and Systems Conference (RSS 2016), 2016Conference paper (Refereed)
    Abstract [en]

    Autonomous mobile robots often require informa-tion about the environment beyond merely the shape of thework-space. In this work we present a probabilistic method formappingdynamics, in the sense of learning and representingstatistics about the flow of discrete objects (e.g., vehicles, people)as well as continuous media (e.g., air flow). We also demonstratethe capabilities of the proposed method with two use cases. Onerelates to motion planning in populated environments, whereinformation about the flow of people can help robots to followsocial norms and to learn implicit traffic rules by observingthe movements of other agents. The second use case relates toMobile Robot Olfaction (MRO), where information about windflow is crucial for most tasks, including e.g. gas detection, gasdistribution mapping and gas source localisation. We representthe underlying velocity field as a set of Semi-Wrapped GaussianMixture Models (SWGMM) representing the learnt local PDF ofvelocities. To estimate the parameters of the PDF we employ aformulation of Expectation Maximisation (EM) algorithm specificfor SWGMM. We also describe a data augmentation methodwhich allows to build a dense dynamic map based on a sparseset of measurements. In case only a small set of observations isavailable we employ a hierarchical sampling method to generatevirtual observations from existing mixtures.

  • 24.
    Kucner, Tomasz Piotr
    et al.
    Örebro University, School of Science and Technology.
    Magnusson, Martin
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Hernandez Bennetts, Victor Manuel
    Örebro University, School of Science and Technology.
    Lilienthal, Achim
    Örebro University, School of Science and Technology.
    Enabling Flow Awareness for Mobile Robots in Partially Observable Environments2017In: IEEE Robotics and Automation Letters, ISSN 2377-3766, E-ISSN 1949-3045, Vol. 2, no 2, 1093-1100 p.Article in journal (Refereed)
    Abstract [en]

    Understanding the environment is a key requirement for any autonomous robot operation. There is extensive research on mapping geometric structure and perceiving objects. However, the environment is also defined by the movement patterns in it. Information about human motion patterns can, e.g., lead to safer and socially more acceptable robot trajectories. Airflow pattern information allow to plan energy efficient paths for flying robots and improve gas distribution mapping. However, modelling the motion of objects (e.g., people) and flow of continuous media (e.g., air) is a challenging task. We present a probabilistic approach for general flow mapping, which can readily handle both of these examples. Moreover, we present and compare two data imputation methods allowing to build dense maps from sparsely distributed measurements. The methods are evaluated using two different data sets: one with pedestrian data and one with wind measurements. Our results show that it is possible to accurately represent multimodal, turbulent flow using a set of Gaussian Mixture Models, and also to reconstruct a dense representation based on sparsely distributed locations.

  • 25.
    Louloudi, Athanasia
    et al.
    Örebro University, School of Science and Technology.
    Mosallam, Ahmed
    Örebro University, School of Science and Technology.
    Marturi, Naresh
    Örebro University, School of Science and Technology.
    Janse, Pieter
    Örebro University, School of Science and Technology.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Integration of the humanoid robot Nao inside a smart home: a case study2010Conference paper (Refereed)
    Abstract [en]

    This paper presents a case study demonstrating the integration of the humanoid robotic platform Nao within a Network Robot System (NRS) application. The specific scenario of interest takes place in a smart home environment; the task being that of bringing a can of soda from a fridge to a human user. We use this concrete scenario to evaluate how the performance of such a robot can be affected by being embedded inside an intelligent domestic environment. This study points out that, by cooperating with different components on the network the overall performance of the robot is increased.

  • 26.
    Monroy, Javier
    et al.
    Instituto de Investigación Biomedica de Malaga (IBIMA), Universidad de Malaga, Malaga, Spain.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Fan, Han
    Örebro University, School of Science and Technology.
    Lilienthal, Achim
    Örebro University, School of Science and Technology.
    Gonzales-Jimenez, Javier
    Instituto de Investigación Biomedica de Malaga (IBIMA), Universidad de Malaga, Malaga, Spain.
    GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments2017In: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 17, no 7, 1479Article in journal (Refereed)
    Abstract [en]

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  • 27.
    Neumann, Patrick
    et al.
    BAM, Berlin, Germany.
    Asadi, Sahar
    Örebro University, School of Science and Technology.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Bartholmai, Matthias
    BAM, Berlin, Germany.
    Monitoring of CCS areas using micro unmanned aerial vehicles (MUAVs)2013In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 37, 4182-4190 p.Article in journal (Refereed)
    Abstract [en]

    Carbon capture & storage (CCS) is one of the most promis ing technologies for greenhouse gas (GHG) management.However, an unsolved issue of CCS is the development of appropriate long-term monitoring systems for leakdetection of the stored CO2. To complement already existing monitoring infrastructure for CO2 storage areas, and toincrease the granularity of gas concentration measurements, a quickly deployab le, mobile measurement device isneeded. In this paper, we present an autonomous gas-sensitive micro-drone, which can be used to monitor GHGemissions, more specifically, CO2. Two different measurement strategies are proposed to address this task. First, theuse of predefined sensing trajectories is evaluated for the task of gas distribution mapping using the micro-drone.Alternatively, we present an adaptive strategy, which suggests sampling points based on an artific ial potential field(APF). The results of real-world experiments demonstrate the feas ibility of using gas-sensitive micro-drones for GHG monitoring missions. Thus, we suggest a multi-layered surveillance system for CO2 storage areas.

  • 28. Neumann, Patrick
    et al.
    Bartholmai, Mattias
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Adaptive gas source localization strategies and gas distribution mapping using a gas-sensitive micro-drone2012In: Proceedings of the 16th ITG / GMA Conference, 2012, 800-809 p.Conference paper (Refereed)
    Abstract [en]

    In this paper we exemplify how to address environmental monitoring tasks with a gas-sensitive micro-drone and present two different approaches to locate gas emission sources. First, we sent the micro-drone in real-world experiments along predefined sweeping trajectories to model the gas distribution. The identification of the gas source location is made afterwards based on the created model. Second, we adapted two bio-inspired plume tracking algorithms that have been implemented so far on ground-based mobile robots. We developed a third bio-inspired algorithm, which is called “pseudo gradient-based algorithm”, and compared its perfomance in real-world experiments with the other two algorithms.Keywords: Anemotaxis, chemotaxis, micro UAV, bio-inspired, chemical sensing, gas distribution modeling, gas source localization, gas sensors, mobile sensing system, odor localization, olfaction, plume tracking, quadrocopter.

  • 29.
    Neumann, Patrick
    et al.
    BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Bartholmai, Matthias
    BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
    Schiller, Jochen H.
    Institute of Computer Science, FU University, Berlin, Germany.
    Gas source localization with a micro-drone using bio-inspired and particle filter-based algorithms2013In: Advanced Robotics, ISSN 0169-1864, E-ISSN 1568-5535, ISSN 0169-1864, Vol. 27, no 9, 725-738 p.Article in journal (Refereed)
    Abstract [en]

    Gas source localization (GSL) with mobile robots is a challenging task due to the unpredictable nature of gas dispersion,the limitations of the currents sensing technologies, and the mobility constraints of ground-based robots. This work proposesan integral solution for the GSL task, including source declaration. We present a novel pseudo-gradient-basedplume tracking algorithm and a particle filter-based source declaration approach, and apply it on a gas-sensitivemicro-drone. We compare the performance of the proposed system in simulations and real-world experiments againsttwo commonly used tracking algorithms adapted for aerial exploration missions.

  • 30.
    Neumann, Patrick P.
    et al.
    BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Bartholmai, Matthias
    BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
    From Insects to Micro Air Vehicles: A Comparison of Reactive Plume Tracking Strategies2016In: Intelligent Autonomous Systems 13, Springer, 2016, 1533-1548 p.Conference paper (Refereed)
    Abstract [en]

    Insect behavior is a common source of inspiration for roboticists and computer scientists when designing gas-sensitive mobile robots. More specifically, tracking airborne odor plumes, and localization of distant gas sources are abilities that suit practical applications such as leak localization and emission monitoring. Gas sensing with mobile robots has been mostly addressed with ground-based platforms and under simplified conditions and thus, there exist a significant gap between the outstanding insect abilities and state-of-the-art robotics systems. As a step toward practical applications, we evaluated the performance of three biologically inspired plume tracking algorithms. The evaluation is carried out not only with computer simulations, but also with real-world experiments in which, a quadrocopter-based micro Unmanned Aerial Vehicle autonomously follows a methane trail toward the emitting source. Compared to ground robots, micro UAVs bring several advantages such as their superior steering capabilities and fewer mobility restrictions in complex terrains. The experimental evaluation shows that, under certain environmental conditions, insect like behavior in gas-sensitive UAVs is feasible in real-world environments.

  • 31.
    Neumann, Patrick P.
    et al.
    BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
    Schnürmacher, Michael
    BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Bartholmai, Matthias
    BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
    Schiller, Jochen
    BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
    A Probabilistic Gas Patch Path Prediction Approach for Airborne Gas Source Localization in Non-Uniform Wind FieldsIn: Sensor Letters, ISSN 1546-198XArticle in journal (Refereed)
    Abstract [en]

    In this paper, we show that a micro unmanned aerial vehicle (UAV) equipped with commercially available gas sensors can address environmental monitoring and gas source localization (GSL) tasks. To account for the challenges of gas sensing under real-world conditions, we present a probabilistic approach to GSL that is based on a particle filter (PF). Simulation and real-world experiments demonstrate the suitability of this algorithm for micro UAV platforms.

  • 32.
    Neumann, Patrick P.
    et al.
    BAM Federal Institute for Materials Research and Testing, Berlin.
    Schnürmacher, Michael
    Institute of Computer Science, FU University, Berlin, Germany.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Bartholmai, Matthias
    BAM Federal Institute for Materials Research and Testing, Berlin.
    Schiller, Jochen H.
    Institute of Computer Science, FU University, Berlin, Germany.
    A Probabilistic Gas Patch Path Prediction Approach for Airborne Gas Source Localization in Non-Uniform Wind Fields2014In: Sensor Letters, ISSN 1546-198X, Vol. 12, no 6-7, 1113-1118 p.Article in journal (Refereed)
    Abstract [en]

    In this paper, we show that a micro unmanned aerial vehicle (UAV) equipped with commercially available gas sensors can addressenvironmental monitoring and gas source localization (GSL) tasks. To account for the challenges of gas sensing under real-world conditions,we present a probabilistic approach to GSL that is based on a particle filter (PF). Simulation and real-world experiments demonstrate thesuitability of this algorithm for micro UAV platforms.

  • 33. Neumann, Patrick
    et al.
    Schnürmacher, Michael
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Bartholmai, Matthias
    Schiller, Jochen
    A Probabilistic Gas Patch Prediction Approach for Airborne Gas Source Localization in Non-Uniform Wind Fields2013In: Proceedings of the 15th ISOEN, 2013Conference paper (Refereed)
  • 34.
    Pomareda, Victor
    et al.
    University of Barcelona, Spain.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Abdul Khaliq, Ali
    Örebro University, School of Science and Technology.
    Trincavelli, Marco
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    Marco, Santiago
    University of Barcelona, Spain.
    Chemical source localization in real environments integrating chemical concentrations in a probabilistic plume mapping approach2013In: Proceedings of the 15th International Symposium on Olfaction and Electronic Nose (ISOEN 2013), 2013Conference paper (Refereed)
    Abstract [en]

    Chemical plume source localization algorithms can be classified either as reactive plume tracking or gas distribution mapping approaches. Here, we focus on gas distribution mapping methods where the robot does not need to track the plume to find the source and can be used for other tasks. Probabilistic mapping approaches have been previously applied to real-world data successfully; e.g., in the approach proposed by Pang and Farrell. Instead of the quasi-continuous gas measurement values, this algorithm considers events (detections and non-detections) based on whether the sensor response is above or below a threshold to update recursively a source probability grid map; thus, discarding important information. We developed an extension of this event-based approach, integrating chemical concentrations directly instead of binary information. In this work, both algorithms are compared using real-world data obtained from a photo-ionization detector (PID), a non-selective gas sensor, and an anemometer in real environments. We validate simulation results and demonstrate that the concentration-based approach is more accurate in terms of a higher probability at the ground truth source location, a smaller distance between the probability maximum and the source location, and a more peaked probability distribution, measured in terms of the overall entropy.

  • 35.
    Trincavelli, Marco
    et al.
    Örebro University, School of Science and Technology.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Lilienthal, Achim J.
    Örebro University, School of Science and Technology.
    A Least Squares approach for learning gas distribution maps from a set of integral gas concentration measurements obtained with a TDLAS sensor2012In: Proceedings of the IEEE Sensors Conference, 2012, IEEE Sensors Council, 2012, 550-553 p.Conference paper (Refereed)
    Abstract [en]

    Applications related to industrial plant surveillance and environmental monitoring often require the creation of gas distribution maps (GDM). In this paper an approach for creating a gas distribution map using a Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor and a laser range scanner mounted on a pan tilt unit is presented. The TDLAS sensor can remotely sense the target gas, in this case methane, requiring novel GDM algorithms compared to the ones developed for traditional in-situ chemical sensors. The presented setup makes it possible to create a 3D model of the environment and to calculate the path travelled by the TDLAS beam. The knowledge of the beam path is of crucial importance since a TDLAS sensor provides an integral measurement of the gas concentration over that path. An efficient GDM algorithm based on a quadratic programming formulation is proposed. The approach is tested in an indoor scenario where transparent bottles filled with methane are successfully localized.

  • 36.
    Vuka, Mikel
    et al.
    Dipartitmento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Schmuker, Michael
    University of Hertfordshire, School of Computer Science, College Lane, Hatfield, Herts, United Kingdom.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Amigoni, Francesco
    Dipartitmento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.
    Lilienthal, Achim J
    Örebro University, School of Science and Technology.
    Exploration and Localization of a Gas Source with MOX Gas Sensorson a Mobile Robot: A Gaussian Regression Bout Amplitude Approach2017In: 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN 2017): Proceedings, IEEE, 2017, 164-166 p.Conference paper (Refereed)
    Abstract [en]

    Mobile robot olfaction systems combine gas sensorswith mobility provided by robots. They relief humansof dull, dirty and dangerous tasks in applications such assearch & rescue or environmental monitoring. We address gassource localization and especially the problem of minimizingexploration time of the robot, which is a key issue due toenergy constraints. We propose an active search approach forrobots equipped with MOX gas sensors and an anemometer,given an occupancy map. Events of rapid change in the MOXsensor signal (“bouts”) are used to estimate the distance to agas source. The wind direction guides a Gaussian regression,which interpolates distance estimates. The contributions of thispaper are two-fold. First, we extend previous work on gassource distance estimation with MOX sensors and propose amodification to cope better with turbulent conditions. Second,we introduce a novel active search gas source localizationalgorithm and validate it in a real-world environment.

  • 37.
    Wiedemann, Thomas
    et al.
    Institute of Communications and Navigation German Aerospace Center (DLR), Wessling, Germany.
    Shutin, Dmitri
    Institute of Communications and Navigation German Aerospace Center (DLR), Wessling, Germany.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Lilienthal, Achim
    Örebro University, School of Science and Technology.
    Bayesian Gas Source Localization and Explorationwith a Multi-Robot System Using PartialDifferential Equation Based Modeling2017In: 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN 2017): Proceedings, 2017, 122-124 p.Conference paper (Refereed)
    Abstract [en]

    Here we report on active water sampling devices forunderwater chemical sensing robots. Crayfish generate jetlikewater currents during food search by waving theflagella of their maxillipeds. The jets generated toward theirsides induce an inflow from the surroundings to the jets.Odor sample collection from the surroundings to theirolfactory organs is promoted by the generated inflow.Devices that model the jet discharge of crayfish have beendeveloped to investigate the effectiveness of the activechemical sampling. Experimental results are presented toconfirm that water samples are drawn to the chemicalsensors from the surroundings more rapidly by using theaxisymmetric flow field generated by the jet discharge thanby centrosymmetric flow field generated by simple watersuction. Results are also presented to show that there is atradeoff between the angular range of chemical samplecollection and the sample collection time.

  • 38.
    Zhang, Ye
    et al.
    Örebro University, School of Science and Technology.
    Gulliksson, Mårten
    Örebro University, School of Science and Technology.
    Hernandez Bennetts, Victor
    Örebro University, School of Science and Technology.
    Schaffernicht, Erik
    Örebro University, School of Science and Technology.
    Reconstructing gas distribution maps via an adaptive sparse regularization algorithm2016In: Inverse Problems in Science and Engineering, ISSN 1741-5977, E-ISSN 1741-5985, Vol. 24, no 7, 1186-1204 p.Article in journal (Refereed)
    Abstract [en]

    In this paper, we present an algorithm to be used by an inspectionrobot to produce a gas distribution map and localize gas sources ina large complex environment. The robot, equipped with a remotegas sensor, measures the total absorption of a tuned laser beam andreturns integral gas concentrations. A mathematical formulation ofsuch measurement facility is a sequence of Radon transforms,which isa typical ill-posed problem. To tackle the ill-posedness, we developa new regularization method based on the sparse representationproperty of gas sources and the adaptive finite-element method. Inpractice, only a discrete model can be applied, and the quality ofthe gas distributionmap depends on a detailed 3-D world model thatallows us to accurately localize the robot and estimate the paths of thelaser beam. In this work, using the positivity ofmeasurements and theprocess of concentration, we estimate the lower and upper boundsof measurements and the exact continuous model (mapping fromgas distribution to measurements), and then create a more accuratediscrete model of the continuous tomography problem. Based onadaptive sparse regularization, we introduce a new algorithm thatgives us not only a solution map but also a mesh map. The solutionmap more accurately locates gas sources, and the mesh map providesthe real gas distribution map. Moreover, the error estimation of theproposed model is discussed. Numerical tests for both the syntheticproblem and practical problem are given to show the efficiency andfeasibility of the proposed algorithm.

1 - 38 of 38
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf