oru.sePublications

Please wait ... |

Refine search result

CiteExportLink to result list
http://oru.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22personId%22%3A%22authority-person%3A72889%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt1166_recordPermLink",{id:"formSmash:upper:j_idt1166:recordPermLink",widgetVar:"widget_formSmash_upper_j_idt1166_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt1166_j_idt1168",{id:"formSmash:upper:j_idt1166:j_idt1168",widgetVar:"widget_formSmash_upper_j_idt1166_j_idt1168",target:"formSmash:upper:j_idt1166:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa harvard1 ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt1184",{id:"formSmash:upper:j_idt1184",widgetVar:"widget_formSmash_upper_j_idt1184",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt1184",e:"change",f:"formSmash",p:"formSmash:upper:j_idt1184",u:"formSmash:upper:otherStyle"},ext);}}});});

- apa
- harvard1
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt1195",{id:"formSmash:upper:j_idt1195",widgetVar:"widget_formSmash_upper_j_idt1195",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt1195",e:"change",f:"formSmash",p:"formSmash:upper:j_idt1195",u:"formSmash:upper:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt1205",{id:"formSmash:upper:j_idt1205",widgetVar:"widget_formSmash_upper_j_idt1205"});});

- html
- text
- asciidoc
- rtf

Rows per page

- 5
- 10
- 20
- 50
- 100
- 250

Sort

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

Select

The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.

1. Belitskii, Genrich PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt1268",{id:"formSmash:items:resultList:0:j_idt1268",widgetVar:"widget_formSmash_items_resultList_0_j_idt1268",onLabel:"Belitskii, Genrich ",offLabel:"Belitskii, Genrich ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt1271",{id:"formSmash:items:resultList:0:j_idt1271",widgetVar:"widget_formSmash_items_resultList_0_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Dmytryshyn, AndriiFaculty of Mechanics and Mathematics, Kiev National Taras Shevchenko University, Kiev, Ukraine.Lipyanski, RuvimDepartment of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.Sergeichuk, VladimirInstitute of Mathematics, Kiev, Ukraine.Tsurkov, ArkadyDepartment of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Problems of classifying associative or Lie algebras over a field of characteristic not 2 and finite metabelian groups are wild2009In: The Electronic Journal of Linear Algebra, ISSN 1537-9582, E-ISSN 1081-3810, Vol. 18, p. 516-529, article id 41Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:0:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_0_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Let F be a field of characteristic different from 2. It is shown that the problems of classifying

(i) local commutative associative algebras over F with zero cube radical,

(ii) Lie algebras over F with central commutator subalgebra of dimension 3, and

(iii) finite p-groups of exponent p with central commutator subgroup of order are hopeless since each of them contains

• the problem of classifying symmetric bilinear mappings UxU → V , or

• the problem of classifying skew-symmetric bilinear mappings UxU → V ,

in which U and V are vector spaces over F (consisting of p elements for p-groups (iii)) and V is 3-dimensional. The latter two problems are hopeless since they are wild; i.e., each of them contains the problem of classifying pairs of matrices over F up to similarity.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:0:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 2. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt1268",{id:"formSmash:items:resultList:1:j_idt1268",widgetVar:"widget_formSmash_items_resultList_1_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Miniversal deformations of pairs of symmetric matrices under congruence2019In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 568, p. 84-105Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:1:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_1_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); For each pair of complex symmetric matrices (A, B) we provide a normal form with a minimal number of independent parameters, to which all pairs of complex symmetric matrices ((A) over tilde (B) over tilde), close to (A, B) can be reduced by congruence transformation that smoothly depends on the entries of (A ) over tilde and (B) over tilde. Such a normal form is called a miniversal deformation of (A, B) under congruence. A number of independent parameters in the miniversal deformation of a symmetric matrix pencil is equal to the codimension of the congruence orbit of this symmetric matrix pencil and is computed too. We also provide an upper bound on the distance from (A, B) to its miniversal deformation.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:1:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 3. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt1268",{id:"formSmash:items:resultList:2:j_idt1268",widgetVar:"widget_formSmash_items_resultList_2_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Örebro University, School of Science and Technology. Department of Computing Science, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Skew-symmetric matrix pencils: stratification theory and tools2014Licentiate thesis, comprehensive summary (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:2:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_2_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Investigating the properties, explaining, and predicting the behaviour of a physical system described by a system (matrix) pencil often require the understanding of how canonical structure information of the system pencil may change, e.g., how eigenvalues coalesce or split apart, due to perturbations in the matrix pencil elements. Often these system pencils have different block-partitioning and / or symmetries. We study changes of the congruence canonical form of a complex skew-symmetric matrix pencil under small perturbations. The problem of computing the congruence canonical form is known to be ill-posed: both the canonical form and the reduction transformation depend discontinuously on the entries of a pencil. Thus it is important to know the canonical forms of all such pencils that are close to the investigated pencil. One way to investigate this problem is to construct the stratification of orbits and bundles of the pencils. To be precise, for any problem dimension we construct the closure hierarchy graph for congruence orbits or bundles. Each node (vertex) of the graph represents an orbit (or a bundle) and each edge represents the cover/closure relation. Such a relation means that there is a path from one node to another node if and only if a skew-symmetric matrix pencil corresponding to the first node can be transformed by an arbitrarily small perturbation to a skew-symmetric matrix pencil corresponding to the second node. From the graph it is straightforward to identify more degenerate and more generic nearby canonical structures. A necessary (but not sufficient) condition for one orbit being in the closure of another is that the first orbit has larger codimension than the second one. Therefore we compute the codimensions of the congruence orbits (or bundles). It is done via the solutions of an associated homogeneous system of matrix equations. The complete stratification is done by proving the relation between equivalence and congruence for the skew-symmetric matrix pencils. This relation allows us to use the known result about the stratifications of general matrix pencils (under strict equivalence) in order to stratify skew-symmetric matrix pencils under congruence. Matlab functions to work with skew-symmetric matrix pencils and a number of other types of symmetries for matrices and matrix pencils are developed and included in the Matrix Canonical Structure (MCS) Toolbox.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:2:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 4. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt1268",{id:"formSmash:items:resultList:3:j_idt1268",widgetVar:"widget_formSmash_items_resultList_3_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Structure preserving stratification of skew-symmetric matrix polynomials2015Report (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:3:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_3_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study how elementary divisors and minimal indices of a skew-symmetric matrix polynomial of odd degree may change under small perturbations of the matrix coefficients. We investigate these changes qualitatively by constructing the stratifications (closure hierarchy graphs) of orbits and bundles for skew-symmetric linearizations. We also derive the necessary and sufficient conditions for the existence of a skew-symmetric matrix polynomial with prescribed degree, elementary divisors, and minimal indices.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:3:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 5. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt1268",{id:"formSmash:items:resultList:4:j_idt1268",widgetVar:"widget_formSmash_items_resultList_4_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Structure preserving stratification of skew-symmetric matrix polynomials2017In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 532, p. 266-286Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:4:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_4_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study how elementary divisors and minimal indices of a skew-symmetric matrix polynomial of odd degree may change under small perturbations of the matrix coefficients. We investigate these changes qualitatively by constructing the stratifications (closure hierarchy graphs) of orbits and bundles for skew-symmetric linearizations. We also derive the necessary and sufficient conditions for the existence of a skew-symmetric matrix polynomial with prescribed degree, elementary divisors, and minimal indices.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:4:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 6. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt1268",{id:"formSmash:items:resultList:5:j_idt1268",widgetVar:"widget_formSmash_items_resultList_5_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations2015Doctoral thesis, comprehensive summary (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:5:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_5_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Developing theory, algorithms, and software tools for analyzing matrix pencils whose matrices have various structures are contemporary research problems. Such matrices are often coming from discretizations of systems of differential-algebraic equations. Therefore preserving the structures in the simulations as well as during the analyses of the mathematical models typically means respecting their physical meanings and may be crucial for the applications. This leads to a fast development of structure-preserving methods in numerical linear algebra along with a growing demand for new theories and tools for the analysis of structured matrix pencils, and in particular, an exploration of their behaviour under perturbations. In many cases, the dynamics and characteristics of the underlying physical system are defined by the canonical structure information, i.e. eigenvalues, their multiplicities and Jordan blocks, as well as left and right minimal indices of the associated matrix pencil. Computing canonical structure information is, nevertheless, an ill-posed problem in the sense that small perturbations in the matrices may drastically change the computed information. One approach to investigate such problems is to use the stratification theory for structured matrix pencils. The development of the theory includes constructing stratification (closure hierarchy) graphs of orbits (and bundles) that provide qualitative information for a deeper understanding of how the characteristics of underlying physical systems can change under small perturbations. In turn, for a given system the stratification graphs provide the possibility to identify more degenerate and more generic nearby systems that may lead to a better system design.

We develop the stratification theory for Fiedler linearizations of general matrix polynomials, skew-symmetric matrix pencils and matrix polynomial linearizations, and system pencils associated with generalized state-space systems. The novel contributions also include theory and software for computing codimensions, various versal deformations, properties of matrix pencils and matrix polynomials, and general solutions of matrix equations. In particular, the need of solving matrix equations motivated the investigation of the existence of a solution, advancing into a general result on consistency of systems of coupled Sylvester-type matrix equations and blockdiagonalizations of the associated matrices.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:5:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 7. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt1268",{id:"formSmash:items:resultList:6:j_idt1268",widgetVar:"widget_formSmash_items_resultList_6_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt1271",{id:"formSmash:items:resultList:6:j_idt1271",widgetVar:"widget_formSmash_items_resultList_6_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Dopico, Froilán M.Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Generic complete eigenstructures for sets of matrix polynomials with bounded rank and degree2017In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 535, p. 213-230Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:6:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_6_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The set POL

_{d,}_{r}^{m}^{×n}of*m*×*n*complex matrix polynomials of grade*d*and (normal) rank at most*r*in a complex (*d*+1)*mn*dimensional space is studied. For*r*=1,...,min{*m*,*n*}−1, we show that POL_{d,}_{r}^{m}^{×n}is the union of the closures of the*rd*+1 sets of matrix polynomials with rank*r*, degree exactly*d*, and explicitly described complete eigenstructures. In addition, for the full-rank rectangular polynomials, i.e.*r*=min{*m*,*n*} and*m*≠*n*, we show that POL_{d,}_{r}^{m}^{×n}coincides with the closure of a single set of the polynomials with rank*r*, degree exactly*d*, and the described complete eigenstructure. These complete eigenstructures correspond to generic*m*×*n*matrix polynomials of grade*d*and rank at most*r*.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:6:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 8. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt1268",{id:"formSmash:items:resultList:7:j_idt1268",widgetVar:"widget_formSmash_items_resultList_7_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt1271",{id:"formSmash:items:resultList:7:j_idt1271",widgetVar:"widget_formSmash_items_resultList_7_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Dopico, Froilán M.Departamento de Matemáticas, Universidad Carlos III de Madrid.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Generic matrix polynomials with fixed rank and fixed degree2016Report (Other academic)9. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt1268",{id:"formSmash:items:resultList:8:j_idt1268",widgetVar:"widget_formSmash_items_resultList_8_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt1271",{id:"formSmash:items:resultList:8:j_idt1271",widgetVar:"widget_formSmash_items_resultList_8_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Dopico, Froilán M.Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Generic skew-symmetric matrix polynomials with fixed rank and fixed odd grade2018In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 536, p. 1-18Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:8:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_8_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We show that the set of m×m complex skew-symmetric matrix polynomials of odd grade

*d*, i.e., of degree at most*d*, and (normal) rank at most 2*r*is the closure of the single set of matrix polynomials with the certain, explicitly described, complete eigenstructure. This complete eigenstructure corresponds to the most generic m×m complex skew-symmetric matrix polynomials of odd grade*d*and rank at most 2*r*. In particular, this result includes the case of skew-symmetric matrix pencils (d=1).PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:8:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 10. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt1268",{id:"formSmash:items:resultList:9:j_idt1268",widgetVar:"widget_formSmash_items_resultList_9_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt1271",{id:"formSmash:items:resultList:9:j_idt1271",widgetVar:"widget_formSmash_items_resultList_9_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fonseca, CarlosDepartment of Mathematics, Kuwait University, Kuwait City, Kuwait.Rybalkina, TetianaInstitute of Mathematics, Kiev, Ukraine.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Classification of pairs of linear mappings between two vector spaces and between their quotient space and subspace2016In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 509, p. 228-246Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:9:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_9_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We classify pairs of linear mappings (U -> V, U/U' -> V') in which U, V are finite dimensional vector spaces over a field IF, and U', are their subspaces. (C) 2016 Elsevier Inc. All rights reserved.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:9:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 11. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt1268",{id:"formSmash:items:resultList:10:j_idt1268",widgetVar:"widget_formSmash_items_resultList_10_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt1271",{id:"formSmash:items:resultList:10:j_idt1271",widgetVar:"widget_formSmash_items_resultList_10_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Futorny, VyacheslavDepartment of Mathematics, University of São Paulo, São Paulo, Brazil.Klymchuk, TetianaUniversitat Politècnica de Catalunya, Barcelona, Spain; Taras Shevchenko National University, Kiev, Ukraine.Sergeichuk, Vladimir V.Institute of Mathematics, Kiev, Ukraine.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Generalization of Roth's solvability criteria to systems of matrix equations2017In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 527, p. 294-302Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:10:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_10_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); W.E. Roth (1952) proved that the matrix equation AX - XB = C has a solution if and only if the matrices [Graphics] and [Graphics] are similar. A. Dmytryshyn and B. Kagstrom (2015) extended Roth's criterion to systems of matrix equations A(i)X(i')M(i) - (NiXi"Bi)-B-sigma i = Ci (i = 1,..., s) with unknown matrices X1,, X-t, in which every X-sigma is X, X-T, or X*. We extend their criterion to systems of complex matrix equations that include the complex conjugation of unknown matrices. We also prove an analogous criterion for systems of quaternion matrix equations. (C) 2017 Elsevier Inc. All rights reserved.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:10:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 12. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt1268",{id:"formSmash:items:resultList:11:j_idt1268",widgetVar:"widget_formSmash_items_resultList_11_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt1271",{id:"formSmash:items:resultList:11:j_idt1271",widgetVar:"widget_formSmash_items_resultList_11_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Futorny, VyacheslavDepartment of Mathematics, University of São Paulo, São Paulo, Brazil.Kågström, BoDepartment of Computing Science and HPC2N, Umeå University, Umeå, Sweden.Klimenko, LenaNational Technical University of Ukraine “Kyiv Polytechnic Institute”, Kiev, Ukraine.Sergeichuk, VladimirInstitute of Mathematics, Kiev, Ukraine.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence2015In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 469, p. 305-334Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:11:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_11_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We construct the Hasse diagrams G

_{2}and G_{3}for the closure ordering on the sets of congruence classes of 2 × 2 and 3 × 3 complex matrices. In other words, we construct two directed graphs whose vertices are 2 × 2 or, respectively, 3 × 3 canonical matrices under congruence, and there is a directed path from A to B if and only if A can be transformed by an arbitrarily small perturbation to a matrix that is congruent to B. A bundle of matrices under congruence is defined as a set of square matrices A for which the pencils A + λA^{T}belong to the same bundle under strict equivalence. In support of this definition, we show that all matrices in a congruence bundle of 2 × 2 or 3 × 3 matrices have the same properties with respect to perturbations. We construct the Hasse diagrams G_{2}^{B}and G_{3}^{B}for the closure ordering on the sets of congruence bundles of 2 × 2 and, respectively, 3 × 3 matrices. We find the isometry groups of 2 × 2 and 3 × 3 congruence canonical matrices.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:11:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 13. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt1268",{id:"formSmash:items:resultList:12:j_idt1268",widgetVar:"widget_formSmash_items_resultList_12_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt1271",{id:"formSmash:items:resultList:12:j_idt1271",widgetVar:"widget_formSmash_items_resultList_12_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Futorny, VyacheslavDepartment of Mathematics, University of São Paulo, São Paulo, Brazil.Sergeichuk, VladimirInstitute of Mathematics, Kiev, Ukraine.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Miniversal deformations of matrices of bilinear forms2012In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 436, no 7, p. 2670-2700Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:12:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_12_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Arnold [V.I. Arnold, On matrices depending on parameters, Russian Math. Surveys 26 (2) (1971) 29–43] constructed miniversal deformations of square complex matrices under similarity; that is, a simple normal form to which not only a given square matrix

*A*but all matrices*B*close to it can be reduced by similarity transformations that smoothly depend on the entries of*B*. We construct miniversal deformations of matrices under congruence.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:12:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 14. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt1268",{id:"formSmash:items:resultList:13:j_idt1268",widgetVar:"widget_formSmash_items_resultList_13_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt1271",{id:"formSmash:items:resultList:13:j_idt1271",widgetVar:"widget_formSmash_items_resultList_13_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Futorny, VyacheslavDepartment of Mathematics, University of São Paulo, São Paulo, Brazil.Sergeichuk, VladimirInstitute of Mathematics, Kiev, Ukraine.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Miniversal deformations of matrices under *congruence and reducing transformations2014In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 446, no April, p. 388-420Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:13:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_13_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Arnold (1971) [1] constructed a miniversal deformation of a square complex matrix under similarity; that is, a simple normal form to which not only a given square matrix

*A*but all matrices*B*close to it can be reduced by similarity transformations that smoothly depend on the entries of*B*. We give miniversal deformations of matrices of sesquilinear forms; that is, of square complex matrices under *congruence, and construct an analytic reducing transformation to a miniversal deformation. Analogous results for matrices under congruence were obtained by Dmytryshyn, Futorny, and Sergeichuk (2012) [11].PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:13:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 15. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt1268",{id:"formSmash:items:resultList:14:j_idt1268",widgetVar:"widget_formSmash_items_resultList_14_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt1271",{id:"formSmash:items:resultList:14:j_idt1271",widgetVar:"widget_formSmash_items_resultList_14_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Dept. Computing Science, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Johansson, StefanDept. Computing Science, Umeå University, Umeå, Sweden.Kågström, BoDept. Computing Science, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Canonical structure transitions of system pencils2015Report (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:14:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_14_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We investigate the changes under small perturbations of the canonical structure information for a system pencil (A B C D) − s (E 0 0 0), det(E) ≠ 0, associated with a (generalized) linear time-invariant state-space system. The equivalence class of the pencil is taken with respect to feedback-injection equivalence transformation. The results allow to track possible changes under small perturbations of important linear system characteristics.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:14:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 16. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt1268",{id:"formSmash:items:resultList:15:j_idt1268",widgetVar:"widget_formSmash_items_resultList_15_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt1271",{id:"formSmash:items:resultList:15:j_idt1271",widgetVar:"widget_formSmash_items_resultList_15_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Johansson, StefanDepartment of Computing Science and HPC2N, Umeå University, Umeå, Sweden.Kågström, BoDepartment of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Canonical structure transitions of system pencils2017In: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 38, no 4, p. 1249-1267Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:15:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_15_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We investigate the changes of the canonical structure information under small perturbations for a system pencil associated with a (generalized) linear time-invariant state-space system. The equivalence class of the pencil is taken with respect to feedback-injection equivalence transformations. The results allow us to track possible changes of important linear system characteristics under small perturbations.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:15:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 17. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt1268",{id:"formSmash:items:resultList:16:j_idt1268",widgetVar:"widget_formSmash_items_resultList_16_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt1271",{id:"formSmash:items:resultList:16:j_idt1271",widgetVar:"widget_formSmash_items_resultList_16_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science and HPC2N, Umeå. University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Johansson, StefanDepartment of Computing Science and HPC2N, Umeå. University, Umeå, Sweden.Kågström, BoDepartment of Computing Science and HPC2N, Umeå. University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Codimension computations of congruence orbits of matrices, symmetric and skew-symmetric matrix pencils using Matlab2013Report (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:16:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_16_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Matlab functions to work with the canonical structures for congru-ence and *congruence of matrices, and for congruence of symmetricand skew-symmetric matrix pencils are presented. A user can providethe canonical structure objects or create (random) matrix examplesetups with a desired canonical information, and compute the codi-mensions of the corresponding orbits: if the structural information(the canonical form) of a matrix or a matrix pencil is known it isused for the codimension computations, otherwise they are computednumerically. Some auxiliary functions are provided too. All thesefunctions extend the Matrix Canonical Structure Toolbox.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:16:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 18. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt1268",{id:"formSmash:items:resultList:17:j_idt1268",widgetVar:"widget_formSmash_items_resultList_17_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt1271",{id:"formSmash:items:resultList:17:j_idt1271",widgetVar:"widget_formSmash_items_resultList_17_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Örebro University, School of Science and Technology. Department of Computing Science, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Johansson, StefanDepartment of Computing Science, Umeå University, Umeå, Sweden.Kågström, BoDepartment of Computing Science, Umeå University, Umeå, Sweden.Van Dooren, PaulDepartment of Mathematical Engineering, Université catholique de Louvain, Louvain-la-Neuve, Belgium.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Geometry of Matrix Polynomial Spaces2019In: Foundations of Computational Mathematics, ISSN 1615-3375, E-ISSN 1615-3383Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:17:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_17_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study how small perturbations of general matrix polynomials may change their elementary divisors and minimal indices by constructing the closure hierarchy (stratification) graphs of matrix polynomials’ orbits and bundles. To solve this problem, we construct the stratification graphs for the first companion Fiedler linearization of matrix polynomials. Recall that the first companion Fiedler linearization as well as all the Fiedler linearizations is matrix pencils with particular block structures. Moreover, we show that the stratification graphs do not depend on the choice of Fiedler linearization which means that all the spaces of the matrix polynomial Fiedler linearizations have the same geometry (topology). This geometry coincides with the geometry of the space of matrix polynomials. The novel results are illustrated by examples using the software tool StratiGraph extended with associated new functionality.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:17:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 19. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt1268",{id:"formSmash:items:resultList:18:j_idt1268",widgetVar:"widget_formSmash_items_resultList_18_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt1271",{id:"formSmash:items:resultList:18:j_idt1271",widgetVar:"widget_formSmash_items_resultList_18_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Johansson, StefanDepartment of Computing Science and HPC2N, Umeå University, Umeå, Sweden.Kågström, BoDepartment of Computing Science and HPC2N, Umeå University, Umeå, Sweden.Van Dooren, PaulUniversite catholique de Louvain, Belgium.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Geometry of spaces for matrix polynomial Fiedler linearizations2015Report (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:18:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_18_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study how small perturbations of matrix polynomials may change their elementary divisors and minimal indices by constructing the closure hierarchy graphs (stratifications) of orbits and bundles of matrix polynomial Fiedler linearizations. We show that the stratifica-tion graphs do not depend on the choice of Fiedler linearization which means that all the spaces of the matrix polynomial Fiedler lineariza-tions have the same geometry (topology). The results are illustrated by examples using the software tool StratiGraph.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:18:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 20. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt1268",{id:"formSmash:items:resultList:19:j_idt1268",widgetVar:"widget_formSmash_items_resultList_19_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt1271",{id:"formSmash:items:resultList:19:j_idt1271",widgetVar:"widget_formSmash_items_resultList_19_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Kågström, BoDepartment of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Coupled Sylvester-type Matrix Equations and Block Diagonalization2015In: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 36, no 2, p. 580-593Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:19:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_19_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We prove Roth-type theorems for systems of matrix equations including an arbitrary mix of Sylvester and $\star$-Sylvester equations, in which the transpose or conjugate transpose of the unknown matrices also appear. In full generality, we derive consistency conditions by proving that such a system has a solution if and only if the associated set of $2 \times 2$ block matrix representations of the equations are block diagonalizable by (linked) equivalence transformations. Various applications leading to several particular cases have already been investigated in the literature, some recently and some long ago. Solvability of these cases follow immediately from our general consistency theory. We also show how to apply our main result to systems of Stein-type matrix equations.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:19:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 21. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt1268",{id:"formSmash:items:resultList:20:j_idt1268",widgetVar:"widget_formSmash_items_resultList_20_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt1271",{id:"formSmash:items:resultList:20:j_idt1271",widgetVar:"widget_formSmash_items_resultList_20_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Kågström, BoDepartment of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Orbit closure hierarchies of skew-symmetric matrix pencils2014Report (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:20:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_20_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study how small perturbations of a skew-symmetric matrix pencil may change its canonical form under congruence. This problem is also known as the stratification problem of skew-symmetric matrix pencil orbits and bundles. In other words, we investigate when the closure of the congruence orbit (or bundle) of a skew-symmetric matrix pencil contains the congruence orbit (or bundle) of another skew-symmetric matrix pencil. This theory relies on our main theorem stating that a skew-symmetric matrix pencil A-λB can be approximated by pencils strictly equivalent to a skew-symmetric matrix pencil C-λD if and only if A-λB can be approximated by pencils congruent to C-λD.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:20:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 22. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt1268",{id:"formSmash:items:resultList:21:j_idt1268",widgetVar:"widget_formSmash_items_resultList_21_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt1271",{id:"formSmash:items:resultList:21:j_idt1271",widgetVar:"widget_formSmash_items_resultList_21_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:21:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Kågström, BoDepartment of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:21:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Orbit closure hierarchies of skew-symmetric matrix pencils2014In: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 35, no 4, p. 1429-1443Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:21:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_21_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study how small perturbations of a skew-symmetric matrix pencil may change its canonical form under congruence. This problem is also known as the stratification problem of skew-symmetric matrix pencil orbits and bundles. In other words, we investigate when the closure of the congruence orbit (or bundle) of a skew-symmetric matrix pencil contains the congruence orbit (or bundle) of another skew-symmetric matrix pencil. The developed theory relies on our main theorem stating that a skew-symmetric matrix pencil A - lambda B can be approximated by pencils strictly equivalent to a skew-symmetric matrix pencil C - lambda D if and only if A - lambda B can be approximated by pencils congruent to C - lambda D.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:21:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 23. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt1268",{id:"formSmash:items:resultList:22:j_idt1268",widgetVar:"widget_formSmash_items_resultList_22_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt1271",{id:"formSmash:items:resultList:22:j_idt1271",widgetVar:"widget_formSmash_items_resultList_22_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:22:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Kågström, BoDepartment of Computing Science and HPC2N, Umeå University, Umeå, Sweden.Sergeichuk, Vladimir V.Institute of Mathematics, Kiev, Ukraine.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:22:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Skew-symmetric matrix pencils: codimension counts and the solution of a pair of matrix equations2013In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 438, no 8, p. 3375-3396Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:22:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_22_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The homogeneous system of matrix equations (X(T)A + AX, (XB)-B-T + BX) = (0, 0), where (A, B) is a pair of skew-symmetric matrices of the same size is considered: we establish the general solution and calculate the codimension of the orbit of (A, B) under congruence. These results will be useful in the development of the stratification theory for orbits of skew-symmetric matrix pencils.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:22:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 24. Dmytryshyn, Andrii PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt1268",{id:"formSmash:items:resultList:23:j_idt1268",widgetVar:"widget_formSmash_items_resultList_23_j_idt1268",onLabel:"Dmytryshyn, Andrii ",offLabel:"Dmytryshyn, Andrii ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt1271",{id:"formSmash:items:resultList:23:j_idt1271",widgetVar:"widget_formSmash_items_resultList_23_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:23:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Kågström, BoDepartment of Computing Science and HPC2N, Umeå University, Umeå, Sweden.Sergeichuk, Vladimir V.Ukrainian Acad Sci, Kiev, Ukraine.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:23:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Symmetric matrix pencils: codimension counts and the solution of a pair of matrix equations2014In: The Electronic Journal of Linear Algebra, ISSN 1537-9582, E-ISSN 1081-3810, Vol. 27, p. 1-18Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:23:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_23_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The set of all solutions to the homogeneous system of matrix equations (X-T A + AX, X-T B + BX) = (0, 0), where (A, B) is a pair of symmetric matrices of the same size, is characterized. In addition, the codimension of the orbit of (A, B) under congruence is calculated. This paper is a natural continuation of the article [A. Dmytryshyn, B. Kagstrom, and V. V. Sergeichuk. Skew-symmetric matrix pencils: Codimension counts and the solution of a pair of matrix equations. Linear Algebra Appl., 438:3375-3396, 2013.], where the corresponding problems for skew-symmetric matrix pencils are solved. The new results will be useful in the development of the stratification theory for orbits of symmetric matrix pencils.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:23:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500});

CiteExportLink to result list
http://oru.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22personId%22%3A%22authority-person%3A72889%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_lower_j_idt1586_recordPermLink",{id:"formSmash:lower:j_idt1586:recordPermLink",widgetVar:"widget_formSmash_lower_j_idt1586_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1586_j_idt1588",{id:"formSmash:lower:j_idt1586:j_idt1588",widgetVar:"widget_formSmash_lower_j_idt1586_j_idt1588",target:"formSmash:lower:j_idt1586:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa harvard1 ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt1604",{id:"formSmash:lower:j_idt1604",widgetVar:"widget_formSmash_lower_j_idt1604",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt1604",e:"change",f:"formSmash",p:"formSmash:lower:j_idt1604",u:"formSmash:lower:otherStyle"},ext);}}});});

- apa
- harvard1
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt1615",{id:"formSmash:lower:j_idt1615",widgetVar:"widget_formSmash_lower_j_idt1615",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt1615",e:"change",f:"formSmash",p:"formSmash:lower:j_idt1615",u:"formSmash:lower:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt1625",{id:"formSmash:lower:j_idt1625",widgetVar:"widget_formSmash_lower_j_idt1625"});});

- html
- text
- asciidoc
- rtf