Till Örebro universitet

oru.seÖrebro universitets publikationer
Ändra sökning
Avgränsa sökresultatet
1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Aleotti, Jacopo
    et al.
    Örebro universitet, Institutionen för teknik.
    Skoglund, Alexander
    Örebro universitet, Institutionen för teknik.
    Duckett, Tom
    Örebro universitet, Institutionen för teknik.
    Position teaching of a robot arm by demonstration with a wearable input device2004Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper describes the first prototype of a "Programming by demonstration" (PbD) system for position teaching of a robot manipulator. A new approach for enabling PbD using supervised learning is presented, by connecting a wearable input device for sensing human arm movements to the software controller of a robot arm. The method does not require analytical modelling of either the human arm or robot, and can be customised for different users and robots. Initial experiments on some simple movements tasks are presented.

  • 2.
    Skoglund, Alexander
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Programming by demonstration of robot manipulators2009Doktorsavhandling, monografi (Övrigt vetenskapligt)
    Abstract [en]

    If a non-expert wants to program a robot manipulator he needs a natural interface that does not require rigorous robot programming skills. Programming-by-demonstration (PbD) is an approach which enables the user to program a robot by simply showing the robot how to perform a desired task. In this approach, the robot recognizes what task it should perform and learn how to perform it by imitating the teacher. One fundamental problem in imitation learning arises from the fact that embodied agents often have different morphologies. Thus, a direct skill transfer from human to a robot is not possible in the general case. Therefore, we need a systematic approach to PbD that takes the capabilities of the robot into account–regarding both perception and body structure. In addition, the robot should be able to learn from experience and improve over time. This raises the question of how to determine the demonstrator’s goal or intentions. We show that this is possible–to some degree–to infer from multiple demonstrations. We address the problem of generation of a reach-to-grasp motion that produces the same results as a human demonstration. It is also of interest to learn what parts of a demonstration provide important information about the task. The major contribution is the investigation of a next-state-planner using a fuzzy time-modeling approach to reproduce a human demonstration on a robot. We show that the proposed planner can generate executable robot trajectories based on a generalization of multiple human demonstrations. We use the notion of hand-states as a common motion language between the human and the robot. It allows the robot to interpret the human motions as its own, and it also synchronizes reaching with grasping. Other contributions include the model-free learning of human to robot mapping, and how an imitation metric ca be used for reinforcement learning of new robot skills. The experimental part of this thesis presents the implementation of PbD of pick-and-place-tasks on different robotic hands/grippers. The different platforms consist of manipulators and motion capturing devices.

    Ladda ner fulltext (pdf)
    FULLTEXT01
    Ladda ner (pdf)
    COVER01
  • 3.
    Skoglund, Alexander
    Örebro universitet, Institutionen för teknik. AASS.
    Towards Manipulator Learning by Demonstration and Reinforcement Learning2006Licentiatavhandling, monografi (Övrigt vetenskapligt)
    Abstract [en]

    This thesis address how robotic arms, called manipulators, can learn a task demonstrated by a teacher. The concept of showing a robot a task, instead of manually programming it, is appealing since it makes it easier to instruct robots. This thesis will introduce the basics of manipulators and techniques suitable for robot learning including an introduction to reinforcement learning. Also a number of other researchers' work are reviewed from the viewpoint of how they apply robot learning from a teacher, and how this knowledge can be reused when a similar problem is faced. One key part of this thesis is an overview of the field Robot Learning from Demonstration, focusing on robotic manipulators, but work including humanoids and mobile robots are also covered. Challenges, such as how to learn from the demonstration, and what to learn are presented together with related work. Initial experiments on learning from a teacher's demonstration, have been carried out using a manipulator and a motion capturing device as a platform. The experiments investigated are

    position teaching of a robotic arm using neural networks and a minimum distance classifier,

    reinforcement learning algorithm for a reaching task, where a demonstrated trajectory was used as bias.

    Based on the presented work we suggest a future work direction and that provide the robot with some basic behaviours needed to learn other higher level tasks.

  • 4.
    Skoglund, Alexander
    et al.
    Örebro universitet, Institutionen för teknik.
    Duckett, Tom
    Örebro universitet, Institutionen för teknik.
    Iliev, Boyko
    Örebro universitet, Institutionen för teknik.
    Lilienthal, Achim J.
    Örebro universitet, Institutionen för teknik.
    Palm, Rainer
    Örebro universitet, Institutionen för teknik.
    Teaching by demonstration of robotic manipulators in non-stationary environments2006Ingår i: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) ,2006, IEEE, 2006, s. 4339-4341Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper we propose a system consisting of a manipulator equipped with range sensors, that is instructed to follow a trajectory demonstrated by a human teacher wearing a motion capturing device. During the demonstration a three dimensional occupancy grid of the environment is built using the range sensor information and the trajectory. The demonstration is followed by an exploration phase, where the robot undergoes self-improvement of the task, during which the occupancy grid is used to avoid collisions. In parallel a reinforcement learning (RL) agent, biased by the demonstration, learns a point-to-point task policy. When changes occur in the workspace, both the occupancy grid and the learned policy will be updated online by the system.

    Ladda ner fulltext (pdf)
    Teaching by Demonstration of Robotic Manipulators in Non-Stationary Environments
  • 5.
    Skoglund, Alexander
    et al.
    Örebro universitet, Institutionen för teknik.
    Iliev, Boyko
    Örebro universitet, Institutionen för teknik.
    Programming by demonstrating robots task primitives2007Ingår i: Servo Magazine, ISSN 1546-0592, nr 12, s. 46-50Artikel i tidskrift (Övrigt vetenskapligt)
  • 6.
    Skoglund, Alexander
    et al.
    Örebro universitet, Institutionen för teknik.
    Iliev, Boyko
    Örebro universitet, Institutionen för teknik.
    Programming by demonstration of robots using task primitives2007Ingår i: Servo magazine, Vol. 5, nr 12, s. 46-50Artikel i tidskrift (Övrig (populärvetenskap, debatt, mm))
  • 7.
    Skoglund, Alexander
    et al.
    Örebro universitet, Institutionen för teknik.
    Iliev, Boyko
    Örebro universitet, Institutionen för teknik.
    Kadmiry, Bourhane
    Örebro universitet, Institutionen för teknik.
    Palm, Rainer
    Örebro universitet, Institutionen för teknik.
    Programming by demonstration of pick-and-place tasks for industrial manipulators using task primitives2007Ingår i: International symposium on computational intelligence in robotics and automation, CIRA 2007, New York: IEEE , 2007, s. 368-373Konferensbidrag (Refereegranskat)
    Abstract [en]

    This article presents an approach to Programming by Demonstration (PbD) to simplify programming of industrial manipulators. By using a set of task primitives for a known task type, the demonstration is interpreted and a manipulator program is automatically generated. A pick-and-place task is analyzed, based on the velocity profile, and decomposed in task primitives. Task primitives are basic actions of the robot/gripper, which can be executed in a sequence to form a complete a task. For modeling and generation of the demonstrated trajectory, fuzzy time clustering is used, resulting in smooth and accurate motions. To illustrate our approach, we carried out our experiments on a real industrial manipulator.

  • 8.
    Skoglund, Alexander
    et al.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Iliev, Boyko
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Palm, Rainer
    Örebro universitet, Akademin för naturvetenskap och teknik.
    A Hand State Approach to Imitation with a Next-State-Planner for Industrial Manipulators2008Ingår i: Proceedings of the 2008 International Conference on Cognitive Systems, 2008, s. 130-137Konferensbidrag (Refereegranskat)
    Abstract [en]

     

    In this paper we present an approach to reproduce human demonstrations in a reach-to-grasp context. The demonstration is represented in hand state space. By using the distance to the target object as a scheduling variable, the way in which the robot approaches the object is controlled. The controller that we deploy to execute the motion is formulated as a nextstateplanner. The planner produces an action from the current state instead of planning the whole trajectory in advance which can be error prone in non-static environments. The results have a direct application in Programming-by-Demonstration. It also contributes to cognitive systems since the ability to reach-tograsp supports the development of cognitive abilities.

     

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 9.
    Skoglund, Alexander
    et al.
    Örebro universitet, Institutionen för teknik.
    Palm, Rainer
    Örebro universitet, Institutionen för teknik.
    Duckett, Tom
    Örebro universitet, Institutionen för teknik.
    Towards a supervised dyna-Q application on a robotic manipulator2005Konferensbidrag (Refereegranskat)
    Abstract [en]

    Having a robot that can learn from and improve upon a human demonstration is a challenge for robotic scientists, and useful for non-engineers who want a robotic assistant to perform a particular task. In this paper we address some of the difficulties one will have to overcome when developing such a system for an articulated manipulator with more degrees-offreedom (d.o.f.) than most mobile robots on wheels. Making a good data capture of what is shown to the robot is one such problem. Another key scientific challenge is the curse of dimensionality that arises from the high dimensional state and action spaces in this application, which we propose to address by combination of supervised and reinforcement learning to gain benefits from both paradigms. We also point out that one has to be careful when trying to obtain an agent that learns a task in as few trials as possible, since it might require much more computational time.

  • 10.
    Skoglund, Alexander
    et al.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Tegin, Johan
    Mechatronics Laboratory, Machine Design, Royal Institute of Technology, Stockholm, Sweden.
    Iliev, Boyko
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Palm, Rainer
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Programming-by-demonstration of reaching motions for robot grasping2009Ingår i: ICAR 2009: 14th international conference on advanced robotics, vols 1-2, New York: IEEE conference proceedings, 2009, s. 1-7Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper presents a novel approach to skill modeling acquired from human demonstration. The approach is based on fuzzy modeling and is using a planner for generating corresponding robot trajectories. One of the main challenges stems from the morphological differences between human and robot hand/arm structure, which makes direct copying of human motions impossible in the general case. Thus, the planner works in hand state space, which is defined such that it is perception-invariant and valid for both human and robot hand. We show that this representation simplifies task reconstruction and preserves the essential parts of the task as well as the coordination between reaching and grasping motion. We also show how our approach can generalize observed trajectories based on multiple demonstrations and that the robot can match a demonstrated behavoir, despite morphological differences. To validate our approach we use a general-purpose robot manipulator equipped with an anthropomorphic three-fingered robot hand.

  • 11. Tegin, Johan
    et al.
    Iliev, Boyko
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Skoglund, Alexander
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Kragic, Danica
    Royal Institute of Technology (KTH).
    Wikander, Jan
    Royal Institute of Technology (KTH).
    Real life grasping using an under-actuated robot hand: simulation and experiments2009Ingår i: ICAR 2009: 14th international conference on advanced robotics, vols 1-2, New York: IEEE conference proceedings, 2009, s. 366-373Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present a system which includes an under-actuated anthropomorphic hand and control algorithms for autonomous grasping of everyday objects. The system comprised a control framework for hybrid force/position control in simulation and reality, a grasp simulator, and an under-actuated robot hand equipped with tactile sensors.We start by presenting the robot hand, the simulation environment and the control framework that enable dynamic simulation of an under-actuated robot hand. We continue by presenting simulation results and also discuss and exemplify the use of simulation in relation to autonomous grasping. Finally, we use the very same controller in real world grasping experiments to validate the simulations and to exemplify system capabilities and limitations.

1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf